首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Two new compounds, [Cu(acac)(N3)(dpyam)] (1), (acac = acetylacetonate; dpyam = di-2-pyridylamine) and [Cu(μ-N3N1)(C2N3- κN1) (dpyam)]2 (2), have been synthesized and characterized by single-crystal X-ray diffraction and magnetic analyses. Compound 1 is a mononuclear compound in which each of two independent Cu(II) ions is penta-coordinated with a distorted square pyramidal geometry with distortion parameters τ = 0.21 and 0.16. In contrast, compound 2 is an azido-bridged dinuclear compound with monodentate dicyanamide anions and the Cu(II) ions display a distorted trigonal bipyramidal geometry with τ = 0.73 and end-on azido bridges providing an equatorial–axial position between the metal ions. The EPR spectra of powdered samples for 1 and 2 have also been investigated. Magnetic susceptibility measurements of compound 2 reveal a very weak ferromagnetic interaction between the Cu(II) ions with a J value of +5.8 cm−1.  相似文献   

2.
Based on chemical grafting of the complex monomer [Eu(TTA)3(4-vinyl-Py)2] (HTTA = 2-thenoyltrifluoroacetylacetate, 4-vinyl-Py = 4-vinyl-pyridine) with two active vinyl groups and MMA (methyl methacrylate), the dual-nodal PMMA-supported metallopolymers with high color-purity Eu3 +-based luminescence are obtained. The physical properties show that their luminescent properties (τobs = 494–552 μs and ФEuL = 50–55%) are distinctively enhanced from copolymerization in comparison with those (τobs = 470 μs and ФEuL = 44%) of the complex monomer besides the improvement of thermal-stabilities.  相似文献   

3.
Highly dispersed titanium dioxide nanocluster (TDN) was synthesized on reduced graphene oxide (RGO) in a toluene–water system under microwave irradiation. The prepared RGO–TDN hybrids were used to modify glassy carbon electrode for loading glucose oxidase. The fabricated glucose biosensor exhibits excellent performance for glucose sensing including low work potential (−0.7 V), high sensitivity (35.8 μA mM−1 cm−2), low detection limit (4.8 μM), wide linear range from 0.032 to 1.67 mM, small Michaelis–Menten constant (Km) (0.81 mM), and short response time (10 s).  相似文献   

4.
A unique cyanide-bridge mixed-valence CuI/CuII clathrate of formula [CuI2(CN)3][{CuII(tren)}2(μ-CN)](CF3SO3)2 [tren = tris(2-aminoethyl)amine] containing cyanide-bridged [{CuII(tren)}2(μ-CN)]3 + binuclear cations stacked between anionic honeycomb layered copper(I) cyanide networks, was synthesized and structurally characterized by single crystal X-ray diffraction. Variable-temperature magnetic susceptibility studies showed that the cyanide bridge mediates a strong antiferromagnetic interaction between the copper(II) centers (J =  160 cm 1, the spin Hamiltonian being defined as H = J SASB).  相似文献   

5.
The reaction of Cu(II) salts with 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-t-butylphenol (Lt-Bu-OH) afforded two bridged-phenoxido/hydroxido complexes. The dinuclear bridged acetate species [Cu2(μ-Lt-Bu-O)(μ-CH3COO)](PF6)2 (1) and the 1D polymeric doubly-bridged-chlorido {[Cu2(μ-Lt-Bu-OH)(μ-Cl)2](ClO4)2·4H2O}n (2). The two complexes were structurally characterized. Both complexes revealed ferromagnetic interactions; moderate in complex 1 (J = + 30.8 cm 1) and very weak (J = + 2.25 cm−1) in 2.  相似文献   

6.
Tubular membranes of La0.6Ca0.4Fe0.75Co0.25O3−δ and La0.5Sr0.5Fe1−yTiyO3−δ (y = 0, 0.2) for the application of partial oxidation of methane to syngas were produced by thermoplastic extrusion and investigated by oxygen permeation measurements. The optimum ceramic content in the feedstock for extrusion was found to be 51 vol% as a result of rheology measurements. Tubes with an outer diameter of 4.8–5.5 mm and thickness of 0.25–0.47 mm were produced with densities higher than 95% of the theoretical density. The oxygen permeation flux of the tubular membranes was measured with air on one side and Ar or Ar + CH4 mixture on the other side. The oxygen permeation rate decreased with Ti-substitution while it was considerably increased by introduction of 5% methane into the system. The normalized oxygen fluxes in air/Ar gradient at 900 °C were measured to be 0.06, 0.051, and 0.012 μmol cm−2 s−1 for LCFC, LSF, and LSFT2, respectively, and 0.18 μmol cm−2 s−1 for LSFT2 with 5% methane.  相似文献   

7.
Mn2+-doped Sn1−xMnxP2O7 (x = 0–0.2) are synthesized by a new co-precipitation method using tin(II)oxalate as tin(IV) precursor, which gives pure tin pyrophosphate at 300 °C, as all the reaction by-products are vaporizable at <150 °C. The dopant Mn2+ acts as a sintering aid and leads to dense Sn1−xMnxP2O7 samples on sintering at 1100 °C. Though conductivity of Sn1−xMnxP2O7 samples in the ambient atmosphere is 10−9–10−6 S cm−1 in 300–550 °C range, it increases significantly in humidified (water vapor pressure, pH2O = 0.12 atm) atmosphere and reaches >10−3 S cm−1 in 100–200 °C range. The maximum conductivity is shown by Sn0.88Mn0.12P2O7 with 9.79 × 10−6 S cm−1 at 550 °C in ambient air and 2.29 × 10−3 S cm−1 at 190 °C in humidified air. It is observed that the humidification of Sn1−xMnxP2O7 samples is a slow process and its rate increases at higher temperature. The stability of Sn1−xMnxP2O7 samples is analyzed.  相似文献   

8.
《Ceramics International》2016,42(6):7284-7289
We investigated the crystal structure and microwave dielectric properties of the Li2SrTa2(1−x)Nb2xO7 (x=0−1.0) compounds using Raman spectroscopy. The Raman spectra clearly exhibit the orthorhombic structure (Cmcm space group) of these compounds. The Raman mode at 800 cm−1 corresponds to the B–O3 (B=Nb and Ta) bond and shifted towards the higher frequency with increase of Nb content. The increase in separation between the two modes at 589 and 596 cm−1 gives an indication of change in the difference between B–O1 and B–O2 bond lengths. The microwave dielectric properties of these compounds were found to be strongly dependent on the BO6 octahedra. The peak width of Ag (800 cm−1) mode and quality factor (Q×f) is inversely proportional to each other and the shift of this mode is correlated to dielectric constant (εr). Further analysis of the Raman modes at 800, 596 and 589 cm−1 (due to the BO6 octahedra) indicates the enhancement of octahedral distortion with increase in Nb content, which led to increase of temperature coefficient of resonant frequency (τƒ).  相似文献   

9.
Fluorinated amorphous carbon (a–C:F) films have been deposited by electron cyclotron resonance chemical vapor deposition (ECR–CVD) at room temperature using C4F8 and CH4 as precursor gases. The chemical compositions and electrical properties of a–C:F films have been studied by X-ray photoelectron spectroscopy (XPS), capacitance–voltage (C–V) and current-voltage (IV) measurements. The results show that C–CFx and C–C species of a–C:F films increase and fluorine content decreases after annealing. The dielectric constant of the annealed a–C:F films increases as a result of enhancement of film density and reduction of electronic polarization. The densities of fixed charges and interface states decrease from 1.6 × 1010 cm 2 and (5–9) × 1011 eV 1 cm 2 to 3.2 × 109 cm 2 and (4–6) × 1011 eV 1 cm 2 respectively when a–C:F films are annealed at 300 °C. The magnitude of CV hysteresis decreases due to reduced dangling bonds at the a–C:F/Si interfaces after heat treatment. The conduction of a–C:F films shows ohmic behavior at lower electric fields and is explained by Poole–Frankel (PF) mechanism at higher electric fields. The PF current increases indicative of reduced trap energy when a–C:F films are subjected to higher annealing temperatures.  相似文献   

10.
The electron field emission (EFE) properties of Si nanostructures (SiNS), such as Si nanorods (SiNR) and Si nanowire (SiNW) bundles were investigated. Additionally, ultrananocrystalline diamond (UNCD) growth on SiNS was carried out to improve the EFE properties of SiNS via forming a combined UNCD/SiNS structure. The EFE properties of SiNS were improved after the deposition of UNCD at specific growth conditions. The EFE performance of SiNR (turn-on field, E0 = 5.3 V/μm and current density, Je = 0.53 mA/cm2 at an applied field of 15 V/μm) was better than SiNW bundles (turn-on field, E0 = 10.9 V/μm and current density, Je < 0.01 mA/cm2 at an applied field of 15 V/μm). The improved EFE properties with turn-on field, E0 = 4.7 V/μm, current density, Je = 1.1 mA/cm2 at an applied field of 15 V/μm was achieved for UNCD coated (UNCD grown for 60 min at 1200 W) SiNR. The EFE property of SiNW bundles was improved to a turn-on field, E0 = 8.0 V/μm, and current density, Je = 0.12 mA/cm2 at an applied field of 15 V/μm (UNCD grown for 30 min at 1200 W).  相似文献   

11.
Reaction of copper(II) nitrate trihydrate with N,N-dimethylethanolamine (dmea) and pivalic acid in methanol led to the hexanuclear copper(II) complex Cu6(η12-C4H10NO)4(η1:η12-C5H9O2)4(η11-C5H9O2)23-OH)2 (1). The crystal structure of 1 indicates that hexametallic centers are bridged by the μ3-alkoxo, dmea oxygens, and the μ2-dicarboxylato oxygen atoms of pivalate ions. Furthermore, in the asymmetric unit, three types of copper ions have been found labeled as Cu1, Cu2 and Cu3. The Cu2 takes a distorted octahedral shape, whereas Cu1 and Cu3 adopt square pyramidal geometries. The complex 1 shows strong antiferromagnetic interactions through the oxo groups within the dimeric units (J =  82.6 to − 25.8 cm 1) and weak antiferromagnetic couplings between the dimers (J =  10.9 and 0.8 cm 1).  相似文献   

12.
NO2 exposure drastically increases the hole concentration on the surface of hydrogen (H)-terminated diamond. When the NO2 gas concentration is higher than 300 ppm, the saturated hole sheet concentration ps stays the same. Therefore, the ps value is regarded as the high limit of the concentration of holes on H-terminated diamond surface, ps,max. In this work, we compared ps,max, mobility μ, and sheet resistance Rs for (100), (110), and (111) H-terminated surfaces of chemical-vapor-deposited single-crystal diamond. On (110), (111), (100) surfaces, the ps,max values are 1.717 × 1014 and 1.512 × 1014 cm 2, and 0.981 × 1014, respectively. This result supports the first-principle calculations: the hole concentration depends on the energy difference between the valence band maximum and the unoccupied orbitals of adsorbent NO2 molecules. We have achieved Rs of 719.3 Ω/sq (ps = 1.456 × 1014 cm 2 and μ = 59.6 cm2 V 1 s 1), the lowest reported so far, on (111) surfaces under 20,000-ppm NO2 atmosphere.  相似文献   

13.
A novel complex, [Gd(hfac)3(NIT-5-Br-3py)]2 (hfac = hexafluoroacetylacetonat, NIT-5-Br-3py = 2-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)-5-bromo-3-pyridine) has been synthesized and characterized structurally and magnetically, in which a NIT-5-Br-3py molecular acts as a bridge ligand linking two Gd(III) ions through the oxygen atom of the N–O group and nitrogen atom from the pyridine ring to form a four-spin system. The fitting result of the magnetic susceptibility shows two different magnetic interactions between Gd(III) ion and NIT-5-Br-3py in one complex: a weak ferromagnetic interaction (J1 = +2.60 cm−1) through the N–O group, and a much weaker antiferromagnetic (J2 = −0.24 cm−1) interaction through pyridine ring.  相似文献   

14.
X-ray structural analysis shows that {[Cu2(CTA) (H2O)] · 5 H2O}n constitutes infinite one-dimensional parallel chains along the c-axis with water columns running down the crystallographic a-axis. The inclusion of water molecules is reversible and is confirmed by X-ray powder diffraction studies. The magnetic data (2–300 K) reveal that there are alternate ferro- (J = 0.29 cm−1) and antiferromagnetic (J = −2.5 cm−1) interactions.  相似文献   

15.
《Ceramics International》2017,43(8):6117-6123
The thermoelectric properties and electronic structures were investigated on p-type BiCu1-xAgxSeO (x=0, 0.02, 0.05, 0.08) ceramics prepared using a two-step solid state reaction followed by inductively hot pressing. All the samples consist of single BiCuSeO phase with lamella structure and no preferential orientation exists in the crystallites. Upon replacing Cu+ by Ag+, maximum values of electrical conductivity of 36.6 S cm−1 and Seebeck coefficient of 350 μV K−1 are obtained in BiCu0.98Ag0.02SeO and BiCu0.92Ag0.08SeO, respectively. Nevertheless, a maximum power factor of 3.67 μW cm−1K−2 is achieved for BiCu0.95Ag0.05SeO at 750 K owing to the moderate electrical conductivity and Seebeck coefficient. Simultaneously, this oxyselenide exhibits a thermal conductivity as low as 0.38 W m−1 K−1 and a high ZT value of 0.72 at 750 K, which is nearly 1.85 times as large as that of the pristine BiCuSeO. The enhancement of thermoelectric performance is mainly attributed to the increased density of states near the Fermi level as indicated by the calculated results.  相似文献   

16.
Terahertz (THz) transmissivity and infrared (IR) reflectivity spectra of orthorhombic microwave (MW) ceramics Bi(Nb1−xVx)O4 (0.002 < x < 0.032) were measured between 4 and 3000 cm−1 (0.09–90 THz) at room temperature. A well underdamped mode, presumably the ferroelectric soft mode, was observed at 25 cm−1. Complex permittivity spectra obtained from the fits to our data were extrapolated down to the MW range and compared with the dielectric data near 5 GHz. The linear extrapolation of dielectric losses from THz down to the MW range is in agreement with the experimental MW losses. Addition of 3.2% of vanadium reduces the sintering temperature to 850 °C and the dielectric properties (ɛ = 42.2, Q·f = 14,000 GHz, τf = +10 ppm/°C) remain at a level satisfactory for MW applications. Somewhat lower MW losses were observed in a sample sintered in the N2 atmosphere.  相似文献   

17.
Kinetics of chlorobenzene hydrodechlorination have been measured over Ni on SiO2, Al2O3, MgO, activated carbon and graphite. A stepwise variation of Ea is analysed using the selective energy transfer model where Ea is identified as the vibrational energy associated with an excitation of the chlorobenzene out-of-plane C–H bending mode. Variation of Ea with vibrational quantum number yields a vibrational frequency of 749 cm−1 and a value (−1.1 cm−1) for the anharmonicity term, which is characteristic of bending vibrational modes. Our analysis suggests that the reacting species are weakly adsorbed on the catalyst: heat of adsorption = −0.31 kJ mol−1.  相似文献   

18.
Copper or cobalt incorporated TiO2 supported ZSM-5 catalysts were prepared by a sol–gel method, and then were characterized by XRD, BET, XPS and UV–vis diffuse reflectance spectroscopy. Ti3 + was the main titanium specie in TiO2/ZSM-5 and Cu–TiO2/ZSM-5, which will be oxide to Ti4 + after Co was doped. With the deposition of Cu or Co, the efficiency of the CO2 conversion to CH3OH was increased under low energy irradiation. The peak production rate of CH3OH reached 50.05 and 35.12 μmol g 1 h 1, respectively. High photo energy efficiency (PEE) and quantum yield (φ) were also reached. The mechanism was discussed in our study.  相似文献   

19.
In this work, tetrahedral diamond-like carbon (DLC) films are deposited on Si, Ti/Si and Au/Si substrates by a new plasma deposition technique — filtered arc deposition (FAD). Their electron field emission characteristics and fluorescent displays of the films are tested using a diode structure. It is shown that the substrate can markedly influence the emission behavior of DLC films. An emission current of 0.1 μA is detected at electric field EDLC/Si=5.6 V/μm, EDLC/Au/Si=14.3 V/μm, and EDLC/Ti/Si=5.2 V/μm, respectively. At 14.3 V/μm, an emission current density JDLC/Si=15.2 μA/cm2, JDLC/Au/Si=0.4 μA/cm2, and JDLC/Ti/Si=175 μA/cm2 is achieved, respectively. It is believed that a thin TiC transition layer exists in the interface between the DLC film and Ti/Si substrate.  相似文献   

20.
Contacts to boron-doped, (100)-oriented diamond implanted with Si or with Si and B were formed and the effects of dose, implantation energy and anneal treatment on the specific contact resistance were examined. Ti/Au contacts on heavily implanted diamond (1016 Si ions cm−2, Ei=30 keV or 1017 Si and B ions cm−2, Ei=15 keV (Si) and Ei=10 keV (B)) had a specific contact resistance lower than the best contacts produced on unimplanted diamond. A specific contact resistance of (1.4±6.4)×10−7 Ω cm−2 was achieved following a 450°C anneal. The results were consistent with a reduction in barrier height brought about by silicide formation. Light silicon implantation (1013 ions cm−2) or relatively light dual implantation (B, Si<1016 ions cm−2) did not reduce the specific contact resistance. Increasing the diamond conductivity by 4×104 decreased the specific contact resistance by over three orders of magnitude, in agreement with the trend observed by Prins (J.F. Prins, J. Phys. D 22 (1989) 1562).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号