首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AlSBA-15 in the powder form with different nSi/nAl ratios (45, 136 and 215) were synthesized by hydrothermal technique. The powdered materials were made into cylindrical extrudates with the addition of bentonite as a binder. The AlSBA-15 materials were characterized by XRD, N2 adsorption, AAS and thermogravimetric analysis. The orderly growth of AlSBA-15 is evidenced by its XRD. The surface area of the powder catalyst is around 950 m2/g and that of extrudate is close to 600 m2/g. Vapor phase alkylation of phenol with tert-butanol was carried out over the extrudates of AlSBA-15 as a model reaction. The activity of AlSBA-15 extrudates follows the order: AlSBA-15 Si/Al = 45 > AlSBA-15 Si/Al = 136 > AlSBA-15 Si/Al = 215. The reaction products were found to be 2-TBP, 4-TBP and 2,4-DTBP. The selectivity to para tertiary butylation is higher than other reactions.  相似文献   

2.
Hydrodeoxygenation of sunflower oil was performed in an autoclave over 5.0 wt.% Pd/Al-SBA-15 (Si/Al molar ratios from 22 to 300) and Pd/HZSM-5(22). The effects of acidity of the catalysts and the reaction temperatures on the activity of the catalysts were investigated. Pd/Al-SBA-15(Si/Al = 300) showed a high activity as 74.4% liquid yield and 72.9% C15–C18 diesel-like hydrocarbons yield at 250 °C. At 300 °C, the higher activity over Pd/Al-SBA-15(Si/Al = 50, 100 and 300) catalysts compared with that over Pd/Al-SBA-15(22) and Pd/HZSM-5(22) indicated that strong acidity of the catalysts was not favorable for converting sunflower oil into C15–C18 diesel-like hydrocarbons at a high temperature.  相似文献   

3.
The gasification of organics in supercritical water is a promising method for the direct production of hydrogen at high pressures, and in order to improve the hydrogen yield or selectivity, activities of various catalysts are evaluated. In this study, hydrogen production from 2-propanol over Ni/Al2O3 and Fe–Cr catalysts was investigated in supercritical water. The experiments were carried out in the temperature range of 400–600 °C and in the reaction time range of 10–30 s, under a pressure of 25 MPa. The hydrogen yields and selectivities of Ni/Al2O3 and Fe–Cr used in this study, and those of Pt/Al2O3 and Ru/Al2O3 used in our previous work were compared. The hydrogen contents of the gaseous products obtained by using Ni/Al2O3 and Fe–Cr were measured as 62 mol% and 70 mol%, respectively, at low temperatures and reaction times. However, the hydrogen yields remained in low levels when compared with that of Pt/Al2O3 used in previous study. Pt/Al2O3 was established to be the most effective and selective catalyst for hydrogen production. During the catalytic gasification of a 0.5 M solution of 2-propanol, hydrogen content up to 96 mol% and hydrogen yield of 1.05 mol/mol 2-propanol were obtained.  相似文献   

4.
Nanocrystalline Fe3O4 based catalysts with theoretical particle size of 31–78 nm were synthesized by a facile direct pyrolysis method and employed in high temperature water gas shift reaction. XRD analysis showed that this method led to obtaining the catalysts directly in the active phase with chromium and copper incorporated into magnetite lattice. The results showed that the addition of chromium significantly increases the BET surface area of the pure iron oxide from 14.87 to 35.42 m2 g−1. Among the catalysts evaluated, Fe–Cr–Cu catalyst revealed higher activity compared to commercial catalyst and showed high stability during 10 h time on stream.  相似文献   

5.
Supported CuO catalysts were prepared by wet impregnation into novel glass fiber corrugated honeycomb supports, and the catalytic combustion of ethyl acetate and the effect of copper loading were examined. Among the catalysts tested, Cu10/Al2O3-M showed the highest activity. For the catalyst, 100% conversion of ethyl acetate was achieved at 300 °C, feed concentration of 1802 mg/m3 and the space velocity of 5000 h 1. To reveal these phenomena, the supports and catalysts were characterized by SEM, BET, XRD, H2-TPR and ethyl acetate-TPD. The catalyst activity was strongly related to the amount of highly dispersed CuO species and suitable porosity.  相似文献   

6.
K and Mg substituted perovskite catalysts La1  xKxCo1  yMgyO3 (x = 0–0.4, y = 0–0.2) for soot combustion were prepared by citric acid complexation and characterized by XRD, FT-IR, SEM, TEM, EDS, H2-TPR, XPS and TG. Soot combustion was remarkably accelerated when K was introduced into LaCoO3. Then Mg was doped into the K substituted LaCoO3, soot combustion was further improved for the restrained growth of Co3O4 phase. K/Mg substitutions were responsible for enhancing activity of catalysts by improving reducibility as suggested by H2-TPR studies. Among all the catalysts, La0.6K0.4Co0.9Mg0.1O3 exhibited the highest activity.  相似文献   

7.
Mesoporous Al–SBA-15 has been synthesized by a hydrothermal method and used as a support for Mn/Al–SBA-15, Fe/Al–SBA-15, and Mn–Fe/Al–SBA-15 catalysts. XRD, N2 sorption, XPS, H2-TPR and activity tests have been used to assess the properties of catalysts. The Mn–Fe/Al–SBA-15 catalyst exhibited a higher SCR activity than Mn/Al–SBA-15 or Fe/Al–SBA-15 due to a synergistic effect between Mn and Fe. After the addition of Fe, the binding energy of Mn 2p3/2 on Mn–Fe/Al–SBA-15(573) decreased by about 0.4 eV and the Mn4 +/Mn3 + ratio decreased to 1.10. The appropriate Mn4 +/Mn3 + ratio may have a great effect on the reduction of NO over Mn–Fe/Al–SBA-15(573) catalyst.  相似文献   

8.
Pt-based catalysts, supported on Al2O3, SiO2 and SiO2–Al2O3, were prepared by incipient wetness impregnation and tested in the gas phase hydrogenation of maleic anhydride at atmospheric pressure and 240 °C. In these conditions, the hydrogenolytic activity pattern was: Pt/SiO2 > Pt/Al2O3 > Pt/SiO2–Al2O3, which is just the opposite of the support acidity trend. These metal Pt-based catalysts showed high selectivity to propionic acid, which was always higher than 80%. The selectivity pattern to this product was: Pt/Al2O3 > Pt/SiO2 > Pt/SiO2–Al2O3. Both activity and selectivity patterns may be explained on the basis of metal-support interaction and support acidity.  相似文献   

9.
《Fuel》2007,86(1-2):106-112
A series of Pd/HZSM-5 (Si/Al2 = 165) catalysts without and with additives of oxides of La, Ce, Sm, Nd and Tb were prepared by the impregnation method, and characterized by XRD, Raman spectra, N2-adsorption, CO-chemisorption, O2-TPD and CH4-TPR techniques. The catalysts were investigated for low-temperature CH4 combustion, and CeO2 was found to have a significant promoting effect on the activity of Pd/HZSM-5. Pd–Ce/HZSM-5 showed the best methane combustion activity and the improved thermal/hydrothermal reaction stability among tested catalysts. The characterization results of catalysts indicated that CeO2 can effectively promote the formation of crystalline PdO and weaken the bond strength of Pd–O on Pd–Ce/HZSM-5, resulting in that Pd–Ce/HZSM-5 possessed lower temperatures for oxygen desorption and CH4 reduction than Pd/HZSM-5. This could be ascribed to the covalent property and large oxygen storage/supplying capacity of CeO2. It is believed that more active PdO species on Pd/HZSM-5 for low-temperature methane combustion process could be effectively promoted due to the introduction of CeO2.  相似文献   

10.
A series of nano-sized mesoporous Al2O3–B2O3 catalysts with different molar ratios of Al/B were prepared from aluminum isopropoxide and boric acid through an evaporation-induced self-assembly (EISA) process, and were characterized by ICP-AES, FTIR (pyridine adsorption), XRD, NH3-TPD, SEM, TEM, and N2 adsorption–desorption. These catalysts were further used as solid acids in the catalytic conversion of glucose to 5-hydroxymethylfurfural (HMF). An optimized HMF yield of 41.4% was obtained within 120 min at 140 °C over Al2O3–B2O3 (Al/B = 5:5). It was demonstrated that catalysts with the presence of Lewis acid sites were more favorable for the formation of HMF.  相似文献   

11.
A series of CoMo catalysts were prepared by various methods with three different supports (Al2O3-1 of γ phase, Al2O3-2 containing γ and δ mixed phases, SiO2). And the effect of morphology of (Co)MoS2 phases on selective hydrodesulfurization was studied systematically. The TEM images showed, in general, the average slab length, the stacking number and the ratio of edge/corner of the sulfided catalysts increase remarkably in the order: SiO2 > Al2O3-2 > Al2O3-1, with the extent of metal–support interaction decreasing in the order: SiO2 < Al2O3-2 < Al2O3-1. And the hydrodesulfurization selectivity correlates linearly with the slab length (or the ratio of edge/corner) of (Co)MoS2 phases, the longer average slab length, the higher ratio of edge/corner, and then the better hydrodesulfurization selectivity. Among all the catalysts, sulfided CoMo/SiO2 of the longest average slab length and the highest edge/corner ratio exhibits the best hydrodesulfurization selectivity.  相似文献   

12.
We present here the single-source-precursor synthesis of Fe3Si and Fe5Si3-containing SiOC ceramic nanocomposites and investigation of their magnetic properties. The materials were prepared upon chemical modification of a hydroxy- and ethoxy-substituted polymethylsilsesquioxane with iron (III) acetylacetonate (Fe(acac)3) in different amounts (5, 15, 30 and 50 wt%), followed by cross-linking at 180 °C and pyrolysis in argon at temperatures ranging from 1000 °C to 1500 °C. The polymer-to-ceramic transformation of the iron-modified polysilsesquioxane and the evolution at high temperatures of the synthesized SiFeOC-based nanocomposite were studied by means of thermogravimetric analysis (TGA) coupled with evolved gas analysis (EGA) as well as X-ray diffraction (XRD). Upon pyrolysis at 1100 °C, the non-modified polysilsesquioxane converts into an amorphous SiOC ceramic; whereas the iron-modified precursors lead to Fe3Si/SiOC nanocomposites. Annealing of Fe3Si/SiOC at temperatures exceeding 1300 °C induced the crystallization of Fe5Si3 and β-SiC. The crystallization of the different iron-containing phases at different temperatures is considered to be a consequence of the in situ generation of a Fe–C–Si alloy within the materials during pyrolysis. Depending on the Fe and Si content in the alloy, either Fe3Si and graphitic carbon (at 1000–1200 °C) or Fe5Si3 and β-SiC (at T > 1300 °C) crystallize. All SiFeOC-based ceramic samples were found to exhibit soft magnetic properties. Magnetization versus applied field measurements of the samples show a saturation magnetization up to 26.0 emu/g, depending on the Fe content within the SiFeOC-based samples as well as on the crystalline iron silicide phases formed during pyrolysis.  相似文献   

13.
Using 2-thiophenecarbonyl chloride (TPCC) as a quenching agent, the number of active centers in propylene polymerization with MgCl2-supported Ziegler–Natta catalysts were determined by measuring the sulfur content of the quenched polymer. Under suitable conditions, the thiophenecarbonyl-labeled polymer chains were stable in the reaction system when TPCC/Al > 1. The number of active centers was found to increase in the first 5 minutes of propylene polymerization, accompanied by rapid decrease of the propagation rate constant kp. Diffusion barrier from the polymer covering the catalyst fragments is thought as the main reason of the rapid decay of kp in the initial stage.  相似文献   

14.
Mullite monoliths with well-defined macropores and mesostructured skeletons have been prepared via the sol–gel process accompanied by phase separation in the presence of poly(ethylene oxide) (PEO). Gelation of Al2O3–SiO2 binary system with chloride salts as an additional precursor has been mediated by propylene oxide (PO) as an acid scavenger, while PEO worked as a phase-separation inducer. The dried gel and that heat-treated at 800 °C are amorphous, and γ-Al2O3 or Si–Al spinel phase nanocrystals are crystallized at 900–1000 °C. After heat-treated at and above 1100 °C for 5 h, the complete crystalline mullite is generated, and the macroporous monoliths in large dimensions of more than 15 mm × 15 mm × 10 mm are obtained. Heat-treatment at 200–1400 °C does not basically spoil the macroporous structure of monoliths, while decreases the macropore size and significantly alters the phase compositions and micro-mesoporous structure.  相似文献   

15.
The effect of graphite oxide (i.e. GO)/La1  xSrxMnO3 (x = 0,0.1) catalysts on methane combustion in CNG's (compressed natural gas) exhaust was investigated in current work. GO layer was employed to realize a surface modification. The light-off temperature of methane decreased, and reached the full conversion at 540 °C. The prepared catalysts were also characterized by TEM, surface energy, XPS and H2-TPR techniques. SEM indicated that the La1  xSrxMnO3 particles grew dispersedly on GO layer, and surface analysis suggested that the introducing of GO can enhance the adsorption of oxygen groups on the surface of the catalysts.  相似文献   

16.
Direct synthesis of DME from synthesis gas attains more attention recently due to higher conversion and lower cost in comparison to dehydration of the methanol. In this work Synthesis gas To Dimethylether (STD) conversion was examined on various hybrid catalysts prepared by seven different methods. These catalysts had the same general form as CuO/ZnO/Al2O3 with theoretical weight ratio 31/16/53, respectively. A novel preparation method for hybrid catalyst namely sol–gel impregnation has also been developed which showed better performance in comparison with the other methods. Also, in order to find out the effect of various alumina contents at a fixed CuO/ZnO ratio on the performance of the hybrid catalyst, a series of catalysts with different contents of alumina have been prepared by sol–gel impregnation method. The optimum weight ratio for CuO/ZnO/Al2O3 catalyst has been found to be about 2:1:5, respectively. These catalysts characterized by TPR, XRD, XRF, BET, TGA, N2O absorption. The catalysts performance were tested at 240 °C, 40 bar and space velocity 1000 ml/gcat.h, with the inlet gas composition H2/CO/N2 = 64/32/4 in a micro slurry reactor.  相似文献   

17.
A super-microporous nanocrystalline 15 mol% copper–alumina (pore size 1 to 2 nm) was prepared via a facile one-pot evaporation-induced self-assembly (EISA) strategy with an economic template. After removing the template at 500 °C, the sample exhibited high specific surface area (larger than 580 m2/g), narrow pore size distribution and high thermal stability. Owing to its large surface area and the good dispersion of active Cu centers, the sample exhibited an enhanced catalytic activity in the selective catalytic reduction (SCR) of NO with methane than those of conventional Cu/Al2O3 catalysts. Additionally, it presented remarkable activity in direct NO decomposition.  相似文献   

18.
New spinel-types of S2O82 /ZnFexAl2  xO4 solid acid catalysts were prepared by sol–gel method. Their catalytic performances for the synthesis of n-butyl acetate were investigated. The catalysts were characterized by means of XRD, IR, XPS, FT-IR of adsorbed pyridine and NH3-TPD. The experimental results showed that S2O82 /ZnFexAl2  xO4 solid acid catalysts maintained the spinel structure as well as the support of ZnFexAl2  xO4. Fe3 + ions were well incorporated and highly dispersed into the spinel lattice. S2O82 /ZnFe0.15Al1.85O4 exhibited the maximum conversion of acetic acid with 98.2%. Moreover, S2O82 /ZnFe0.15Al1.85O4 showed better reusability, which remained above 72.7% conversion of acetic acid even after being used five times.  相似文献   

19.
The steam reforming of methanol was studied over a series of copper–manganese spinel oxide catalysts prepared with the urea–nitrate combustion method. All catalysts showed high activity towards H2 production with high selectivity. Synthesis parameters affected catalyst properties and, among the catalysts tested, the one prepared with 75% excess of urea and an atomic ratio Cu/(Cu + Mn) = 0.30 showed the highest activity. The results show that formation of the spinel CuxMn3  xO4 phase in the oxidized catalysts is responsible for the high activity. Cu–Mn catalysts were found to be superior to CuO–CeO2 catalysts prepared with the same technique.  相似文献   

20.
Er–Si–Al–O–N glasses have been prepared with cation ratio Er:Si:Al = 3.45:3:2 containing various amounts of nitrogen (N = 0, 5, 8, 15 and 22 equiv.%). Glass properties such as microhardness, glass transition temperature and dilatometric softening temperature were measured and it was found that these properties increased linearly with increasing nitrogen content. Glasses were then characterised using Raman spectroscopy in order to obtain information about the structure of these glasses. Deconvolution of peaks in the Raman spectra of Er–Si–Al–O–N glasses revealed that, as nitrogen content increases then the proportion of Q3 species decreases and there is a corresponding increase in the proportion of Q4 species (Qn: n = no. of bridging anions joining SiO4 tetrahedra), confirming that nitrogen increases the crosslinking between individual tetrahedra via the transformation of Q3 oxide species into Q4 oxynitride species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号