首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The development of self-compacting concrete is considered as a milestone achievement in concrete technology due to several advantages. In order to be self-compactable the fresh concrete must show high fluidity besides good cohesiveness. For the purpose of evaluating these properties, several concrete mixtures were prepared with a water to cement ratio of 0.45 in the presence of an acrylic-based superplasticizer at a dosage ranging from 1% to 2% by weight of very fine material fraction (maximum 150 μm). Either limestone powder or fly ash or recycled aggregate powder (that is a powder obtained from the rubble recycling process) were used as mineral addition, in order to assure adequate rheological properties, in terms of cohesiveness, in the self-compacting concretes. Preliminary rheological tests were carried out on cement pastes containing these mineral additions. In some cases, recycled instead of natural aggregate was used by substituting either the coarse or the fine aggregate fraction. The fresh concrete properties were evaluated through slump flow, L-box test and segregation resistance. Compressive strength of concrete was determined at 1, 3, 7 and 28 days of wet curing. Results obtained showed that an optimization of self-compacting concrete mixture seems to be achievable by the simultaneous use of rubble powder and coarse recycled aggregate with improved fresh concrete performance and unchanged concrete mechanical strength.  相似文献   

2.
Cold-bonded fly ash aggregate concrete with fly ash as part of binder or fine aggregate facilitates high volume utilization of fly ash in concrete with minimum energy consumption. This paper investigates the influence of fly ash on strength and sorption behaviour of cold-bonded fly ash aggregate concrete due to partial replacement of cement and also as replacement material for sand. While cement replacement must be restricted based on the compressive strength requirement at desired age, replacement of sand with fly ash appears to be advantageous from early days onwards with higher enhancement in strength and higher utilization of fly ash in mixes of lower cement content. Microstructure of concrete was examined under BSEI mode. Replacement of sand with fly ash is effective in reducing water absorption and sorptivity attributable to the densification of both matrix and matrix–aggregate interfacial bond. Cold-bonded fly ash aggregate concrete with a cement content of 250 kg/m3, results in compressive strength of about 45 MPa, with a total inclusion of around 0.6 m3 of fly ash in unit volume of concrete.  相似文献   

3.
In this study, experiments have been carried out to evaluate the utilization of bottom ash (by-product of power plant) as fine and coarse aggregates in high-strength concrete with compressive strength of 60–80 MPa. Firstly, the chemical and physical characteristics of bottom ash particles, such as chemical compositions, specific gravity and SEM images, were investigated. Further experiments were conducted by replacing fine and coarse bottom ash with normal sand and gravel varying in percentages (25%, 50%, 75%, and 100%). The effect of fine and coarse bottom ash on the flow characteristics and density of concrete mixture was investigated in the aspect of particle shapes and paste absorption of bottom ash. Mechanical properties, such as compressive strengths and modulus of elasticity and flexural strength of high-strength concrete with bottom ash were evaluated. It was found that the slump flow of fresh concrete was slightly decreased from 530 mm to 420 mm when coarse bottom ash was replaced 100% of normal coarse aggregates, while fine bottom ash did not affect the slump flow. Moreover, it also showed that both of fine and coarse bottom ash aggregates had more influence on the flexural strength than compressive strength.  相似文献   

4.
The paper presented herein was carried out to investigate the permeability characteristics of self-compacting rubberized concretes with and without fly ash. At a water–cementitious material (w/cm) ratio of 0.35, the self-compacting concretes (SCCs) were produced by replacing the fine aggregate with four designated crump rubber contents of 0%, 5%, 15%, and 25% by fine aggregate volume. Moreover, the SCCs with fly ash were produced by partial substitution of cement with fly ash at varying amounts of 20% to 60%. Totally, 16 concrete mixtures were cast and tested for permeability related properties such as chloride ion permeability, water sorptivity, and water absorption. The tests were conducted at 28 and 90 days after casting. Tests results revealed that using the crumb rubber aggravated all of the measured properties of self-compacting rubberized concretes (SCRCs) without fly ash. However, with the combined use of the crump rubber and fly ash, the concretes had better resistance to the chloride ion permeability, water sorptivity, and water absorption.  相似文献   

5.
Fly ashes are obtained from thermal power plants and they are pozzolanic materials, which can act as partial replacement material for both portland cement and fine aggregate. With their economical advantages and potential for improving fresh and hardened concrete performance, they have some benefits for using in concrete industry. In this study, the objective was to find the efficiency factors of Turkish C and F-type fly ashes and to compare their properties. Three different cement dosages were used (260, 320, 400 kg/m3), two different ratios (10% and 17%) of cement reduced from the control concretes and three different ratios (depending on cement reduction ratio) of fly ash were added into the mixtures. At the ages of 28 and 90 days, compressive strength, modulus of elasticity and ultrasound velocity tests were carried out. From the compressive strength results, the k efficiency factors of C and F-type fly ashes were obtained. As a result, it is seen that efficiency factors of the concrete produced by the replacement of F and C type fly ashes with cement increase with the increase in cement dosage and concrete age.  相似文献   

6.
Day by day, the amount of the marble dust (MD) as a waste material is significantly of increasing in Turkey. Therefore, the utilization of the waste MD in self-compacting concrete (SCC), as filler material, is the main objective of this study. Besides, the MD is used directly without attempting any additional process. Thus, this would be another advantage for this objective. For this purpose, MD has replaced binder of SCC at certain contents of 0, 50, 100, 150, 200, 250 and 300 kg/m3. After then, slump-flow test, L-box test and V-funnel test are conducted on fresh concrete. Furthermore, compressive strength, flexural strength, ultrasonic velocity, porosity and compactness are determined at the end of 28 days for the hardened concrete specimens. The effect of waste MD usage as filler material on capillarity properties of SCC is also investigated. According to the test results, it is concluded that the workability of fresh SCC has not been affected up to 200 kg/m3 MD content. However, the mechanical properties of hardened SCC have decreased by using MD, especially just above 200 kg/m3 content.  相似文献   

7.
Activated carbon injection is the most mature technology for mercury capture from coal burning power plants; however, this technology increases the carbon content and mercury concentration in the fly ash. This, in turn, may reduce the suitability of fly ash for use in concrete and call into question the safety of using fly ash derived from this process. The focus of this paper is to investigate the reuse potential of post-mercury-control fly ash in concrete by examining the influence of three fly ashes derived from the activated carbon injection on the air content, compressive strength, permeability, and resistance to freezing and thawing of concrete mixtures. Laboratory testing confirmed the influence of the carbon on the air content of the concrete. However there was no difficulty in entraining air in activated carbon injection fly ash concretes within the recommended dosage range of the air-entraining admixture. All air-entrained fly ash concretes exhibited excellent characteristics in compressive strength (?32.0 MPa, 4641 psi at 28 days), resistance to chloride-ion penetration (moderate to low at 28 days of age) and freeze–thaw (?90 average durability factor after 300 cycles). The possible leaching of toxic elements including mercury from one fly ash sample used in this study was also evaluated using the US Environmental Protection Agency’s Toxicity Characteristic Leaching Procedure. The test results indicated that the leaching of toxic elements was much lower than the contamination level.  相似文献   

8.
Self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. Elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This investigation aimed to show possible applicability of genetic programming (GP) to model and formulate the fresh and hardened properties of self-compacting concrete (SCC) containing pulverised fuel ash (PFA) based on experimental data. Twenty-six mixes were made with 0.38 to 0.72 water-to-binder ratio (W/B), 183–317 kg/m3 of cement content, 29–261 kg/m3 of PFA, and 0 to 1% of superplasticizer, by mass of powder. Parameters of SCC mixes modelled by genetic programming were the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength at 7, 28 and 90 days. GP is constructed of training and testing data using the experimental results obtained in this study. The results of genetic programming models are compared with experimental results and are found to be quite accurate. GP has showed a strong potential as a feasible tool for modelling the fresh properties and the compressive strength of SCC containing PFA and produced analytical prediction of these properties as a function as the mix ingredients. Results showed that the GP model thus developed is not only capable of accurately predicting the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength used in the training process, but it can also effectively predict the above properties for new mixes designed within the practical range with the variation of mix ingredients.  相似文献   

9.
The use of paper-mill residuals in concrete formulations was investigated as an alternative to landfill disposal. The mechanical and durability properties of concrete containing paper-mill residuals collected from a wastewater treatment-plant were evaluated. Class F fly ash was used as a replacement for Portland cement (PC) when incorporated into concrete mixtures containing paper-mill residuals and the resulting products were compared to normal concrete. Compressive, splitting tensile, flexural strength and drying shrinkage tests were carried out to evaluate the mechanical properties for up to 90 days. Rapid chloride-permeability tests and initial surface-absorption tests were carried out at 28 days to determine the durability properties. Concrete containing paper-mill residuals showed improvement in the durability test results when PC was replaced with class F fly ash.  相似文献   

10.
This paper illustrates parameter optimization of compressive strength of steel fiber reinforced high strength concrete (SFRHSC) by statistical design and analysis of experiments. Among several factors affecting the compressive strength, five parameters that maximize all of the responses have been chosen as the most important ones as age of testing, binder type, binder amount, curing type and steel fiber volume fraction. Taguchi analysis techniques have been used to evaluate L27 (313) Taguchi’s orthogonal array experimental design results. Signal to noise ratio transformation and ANOVA have been applied to the results of experiments in Taguchi analysis. The confirmation runs were conducted for the optimal parameter level combination, which is obtained from the results of the above methodologies. The maximum compressive strength has been observed as around 124 MPa. By using the optimal parameter level combination, the direct tensile strength and flexural strength tests have been conducted. The mean values at the age of 28 days are obtained as 7.5 MPa and 13 MPa respectively. In this study, it is clearly demonstrated that all main factors except steel fiber significantly contribute to the compressive strength of steel fiber reinforced high strength concrete, yet age and binder type are the most significant contributors.  相似文献   

11.
A judicious use of resources, by using by-products and waste materials, and a lower environmental impact, by reducing carbon dioxide emission and virgin aggregate extraction, allow to approach sustainable building development. Recycled aggregate concrete (RAC) containing supplementary cementitious materials (SCM), if satisfactory concrete properties are achieved, can be an example of such sustainable construction materials.In this work concrete specimens were manufactured by completely replacing fine and coarse aggregates with recycled aggregates from a rubble recycling plant. Also RAC with fly ash (RA + FA) or silica fume (RA + SF) were studied.Concrete properties were evaluated by means of compressive strength and modulus of elasticity in the first experimental part. In the second experimental part, compressive and tensile splitting strength, dynamic modulus of elasticity, drying shrinkage, reinforcing bond strength, carbonation, chloride penetration were studied. Satisfactory concrete properties can be developed with recycled fine and coarse aggregates with proper selection and proportioning of the concrete materials.  相似文献   

12.
This paper presents experimental study on the properties of self-compacting concrete (SCC). Portland cement (PC) was replaced with fly ash (FA), granulated blast furnace slag (GBFS), limestone powder (LP), basalt powder (BP) and marble powder (MP) in various proportioning rates. The influence of mineral admixtures on the workability, compressive strength, ultrasonic pulse velocity, density and sulphate resistance of SCC was investigated. Sulphate resistance tests involved immersion in 10% magnesium sulphate and 10% sodium sulphate solutions for a period of 400 days. The degree of sulphate attack was evaluated using visual examination and reduction in compressive strength. The test results showed that among the mineral admixtures used, FA and GBFS significantly increased the workability and compressive strength of SCC mixtures. Replacing 25% of PC with FA resulted in a strength of more than 105 MPa at 400 days. Moreover, the presence of mineral admixtures had a beneficial effect on the strength loss due to sodium and magnesium sulphate attack. On the other hand, the best resistance to sodium and magnesium sulphate attacks was obtained from a combination of 40% GBFS with 60% PC.  相似文献   

13.
In this paper, applicability of previously published empirical relations among compressive strength, splitting tensile strength and flexural strength of normal concrete, polypropylene fiber reinforced concrete (PFRC) and glass fiber reinforced concrete (GFRC) to steel fiber reinforced concrete (SFRC) was evaluated; moreover, correlations among these mechanical properties of SFRC were analyzed. For the investigation, a large number of experimental data were collected from published literature, where water/binder ratio (w/b), steel fiber aspect ratio and volume fraction were reported in the general range of 0.25–0.5, 55–80 and 0.5–2.0%, respectively, and specimens were cylinders with size of Φ 150 × 300 mm and prisms with size of 150 × 150 × 500 mm. Results of evaluation on these published empirical relations indicate the inapplicability to SFRC, also confirm the necessity of determination on correlations among mechanical properties of SFRC. Through the regression analysis on the experimental data collected, power relations with coefficients of determination of 0.94 and 0.90 are obtained for SFRC between compressive strength and splitting tensile strength, and between splitting tensile strength and flexural strength, respectively.  相似文献   

14.
The building industry is turning increasingly to the use of self-compacting concrete (SCC) in order to improve many aspects of building construction as SCC offers several advantages in technical, economic, and environmental terms. Fresh self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. SCC mixes generally have a much higher content of fine fillers. The use of supplementary cementitious materials is well accepted because of the improvement in concrete properties and also for environmental and economical reasons. The present paper is an effort to quantify the influence of Algerian slag on the properties of fresh and hardened self-compacting concrete. The workability-related fresh properties of SCC were observed through slump flow time and diameter, V-Funnel flow time, J-Ring test, U-Box filling height and GTM sieve stability test. The only hardened property that was included in this study was the compressive strength. An optimum slag content of 15% seems to give a good SCC mixture with workability retention of about 60 min. A decrease in compressive strength with increase of slag content was obtained, but this decrease in compressive strength is less important at late ages (56 and 90 days after mixing).  相似文献   

15.
This paper reports on a comprehensive study on the properties of concrete containing fly ash and steel fibers. Properties studied include unit weight and workability of fresh concrete, and compressive strength, flexural tensile strength, splitting tensile strength, elasticity modulus, sorptivity coefficient, drying shrinkage and freeze–thaw resistance of hardened concrete. Fly ash content used was 0%, 15% and 30% in mass basis, and fiber volume fraction was 0%, 0.25%, 0.5%, 1.0% and 1.5% in volume basis. The laboratory results showed that steel fiber addition, either into Portland cement concrete or fly ash concrete, improve the tensile strength properties, drying shrinkage and freeze–thaw resistance. However, it reduced workability and increase sorptivity coefficient. Although fly ash replacement reduce strength properties, it improves workability, reduces drying shrinkage and increases freeze–thaw resistance of steel fiber reinforced concrete. The performed experiments show that the behaviour of fly ash concrete is similar to that of Portland cement concrete when fly ash is added.  相似文献   

16.
About 10 million tonnes of fly ash are produced yearly as waste from coal fired thermal power plants in Turkey. Only a small portion of this waste is utilized as a raw material in the production of cement and concrete. In this study, Seyitömer power plant fly ash was investigated in the production of light weight bricks. Fly ash, sand and hydrated lime mixtures were steam autoclaved under different test conditions to produce brick samples. An optimum raw material composition was found to be a mixture of 68% fly ash, 20% sand and 12% hydrated lime. The optimum brick forming pressure was 20 MPa. The optimum autoclaving time and autoclaving pressure were found 6 h and 1.5 MPa, respectively. The compressive strength, unit volume weight, water absorption and thermal conductivity of the fly ash–sand–lime bricks obtained under optimum test conditions are 10.25 MPa, 1.14 g/cm3, 40.5% and 0.34 W  m−1 K−1 respectively. The results of this study suggested that it was possible to produce good quality light weight bricks from the fly ash of Seyitömer power plant.  相似文献   

17.
In this study, the effect of high temperature on compressive and splitting tensile strength of lightweight concrete containing fly ash was investigated experimentally and statistically. The mixes incorporating 0%, 10%, 20% and 30% fly ash were prepared. After being heated to temperatures of 200, 400 and 800 °C, respectively, the compressive and splitting tensile strength of lightweight concrete was tested. This article adopts Taguchi approach with an L16 (45) to reduce the numbers of experiment. Two control factors (percentage of fly ash and heating degree) for this study were used. The level of importance of these parameters on compressive and splitting tensile strength was determined by using analysis of variance (ANOVA) method.  相似文献   

18.
This study develops the compressive strength, water permeability and workability of concrete by partial replacement of cement with agro-waste rice husk ash. Two types of rice husk ash with average particle size of 5 micron (ultra fine particles) and 95 micron and with four different contents of 5%, 10%, 15% and 20% by weight were used. Replacement of cement up to maximum of 15% and 20% respectively by 95 and 5 μm rice husk ash, produces concrete with improved strength. However, the ultimate strength of concrete was gained at 10% of cement replacement by ultra fine rice husk ash particles. Also the percentage, velocity and coefficient of water absorption significantly decreased with 10% cement replacement by ultra fine rice husk ash. Moreover, the workability of fresh concrete was remarkably improved by increasing the content of rice husk ash especially in the case of coarser size. It is concluded that partial replacement of cement with rice husk ash improves the compressive strength and workability of concrete and decreases its water permeability. In addition, decreasing rice husk ash average particle size provides a positive effect on the compressive strength and water permeability of hardened concrete but indicates adverse effect on the workability of fresh concrete.  相似文献   

19.
以陶粒为粗骨料制备了轻质混凝土试件,研究了耐碱玻纤、粉煤灰增强材料对轻质混凝土的力学性能及冻融耐久性的影响。结果表明,随着耐碱玻纤掺量的增加,同一龄期轻质混凝土试件的抗压强度、抗拉强度先增大后减小;过高的耐碱玻纤掺量不利于强度的增长,且耐碱玻纤对试件抗拉强度的影响大于抗压强度,其最优掺量为0.6 kg/m^3;掺入适量的粉煤灰(≤15%)能提高轻质混凝土的强度,提升幅度与掺量成正比,但掺量较大时对强度不利;与未掺耐碱玻纤的试件相比,当耐碱玻纤掺量低于0.6 kg/m^3和1.0 kg/m^3时,能分别提升试件的相对动弹性模量和降低质量损失率,改善幅度与耐碱玻纤的掺量正相关;粉煤灰掺量低于15%时有利于提高试件的冻融耐久性,但掺量较高(≥20%)则会降低试件的冻融耐久性指标。  相似文献   

20.
This paper presents experimentally investigated the effects of pozzolan made from various by-product materials on mechanical properties of high-strength concrete. Ground pulverized coal combustion fly ash (FA), ground fluidized bed combustion fly ash (FB), ground rice husk–bark ash (RHBA), and ground palm oil fuel ash (POFA) having median particle sizes less than 11 μm were used to partially replace Portland cement type I to cast high-strength concrete. The results suggest that concretes containing FA, FB, RHBA, and POFA can be used as pozzolanic materials in making high-strength concrete with 28-day compressive strengths higher than 80 MPa. After 7 days of curing, the concretes containing 10–40% FA or FB and 10–30% RHBA or POFA exhibited higher compressive strengths than that of the control concrete (CT). The use of FA, FB, RHBA, and POFA to partially replace Portland cement type I has no significant effect on the splitting tensile strength and modulus of elasticity as compared to control concrete or silica fume concretes. This results suggest that the by-products from industries can be used to substitute Portland cement to produce high-strength concrete without alteration the mechanical properties of concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号