首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A superhard hydrogen-free amorphous diamond-like carbon (DLC) film was deposited by pulsed arc discharge using a carbon source accelerator in a vacuum of 2×10−4 Pa. The growth rate was about 15 nm/min and the optimum ion-plasma energy was about 70 eV. The impact of doping elements (Cu, Zr, Ti, Al, F(Cl), N) on the characteristics of DLC films deposited on metal and silicon substrates was studied aiming at the choice of the optimum coating for low friction couples. The microhardness of thick (≥20 μm) DLC films was studied by Knoop and Vickers indentations, medium thick DLC films (1–3 μm) were investigated using a ‘Fischerscope’, and Young's module of thin films (20–70 nm) was studied by laser induced surface acoustic waves. The bonds in DLC films were investigated by electron energy loss spectroscopy (EELS), X-ray excited Auger electron spectroscopy (XAES), and X-ray photoelectron spectroscopy (XPS). The adhesion of DLC films was defined by the scratch test and Rockwell indentation. The coefficient of friction of the Patinor DLC film was measured by a rubbing cylinders test and by a pin-on-disk test in laboratory air at about 20% humidity and room temperature. The microhardness of the Patinor DLC film was up to 100 GPa and the density of the film was 3.43–3.65 g/cm3. The specific wear rate of the Patinor DLC film is comparable to that of other carbon films.  相似文献   

2.
Diamond-like carbon (DLC) films form a critical protective layer on magnetic hard disks and their reading heads. Now tetrahedral amorphous carbon films (ta–C) thickness of 2 nm are becoming the preferred means due to the highly sp3 content. In this paper, Raman spectra at visible and ultraviolet excitation of ta–C films have been studied as a function of substrate bias voltage. The spectra show that the sp3 content of 70 nm thick DLC films increases with higher substrate bias, while sp3 content of 2 nm ultra-thin films falls almost linearly with bias increment. And this is also consistent with the hardness measurement of 70 nm thick films. We proposed that substrate bias enhances mixing between the carbon films and either the Si films or Al2O3TiC substrate such that thin films contain less sp3 fraction. These mixing bonds are longer than C–C bonds, which inducing the hardness decreasing of ultra-thin DLC films with bias. But for 70 nm DLC, the effect of mixing layer can be negligible by compared to bias effect with higher carbon ion energy. So sp3 content will increase for thick films with substrate bias.  相似文献   

3.
The morphology, composition, and bonding character (carbon hybridization state) of continuous, ultra-thin (thickness ∼ 60 nm) nanocrystalline diamond (NCD) membranes are reported. NCD films were deposited on a silicon substrate that was pretreated using an optimized, two-step seeding process. The surface after each of the two steps, the as-grown NCD topside and the NCD underside (revealed by etching away the silicon substrate) is examined by X-ray PhotoElectron Emission spectroMicroscopy (X-PEEM) combined with X-ray absorption near edge structure (XANES) spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The first step in the seeding process, a short exposure to a hydrocarbon plasma, induces the formation of SiC at the diamond/Si interface along with a thin, uniform layer of hydrogenated, amorphous carbon on top. This amorphous carbon layer allows for a uniform, dense layer of nanodiamond seed particles to be spread over the substrate in the second step. This facilitates the growth of a homogeneous, continuous, smooth, and highly sp3-bonded NCD film. We show for the first time that the underside of this film possesses atomic-scale smoothness (RMS roughness: 0.3 nm) and > 98% diamond content, demonstrating the effectiveness of the two-step seeding method for diamond film nucleation.  相似文献   

4.
In the present work, a chemical treatment with perfluorinated peroxides is proposed to obtain protective layers covalently linked to a diamond-like carbon (DLC) surface. The lubricant properties of perfluorinated compounds and the stability of the chemical modification of DLC surface simultaneously cooperate in this technical approach. Each fluorinated layer is deposed on an bare DLC surface by a dip coating application technique and the covalent linkage of the fluorinated layers is obtained by the thermal decomposition of the peroxidic moieties of the perfluorinated peroxides. Reactive perfluorinated radicals are generated close to the sp2 sites of the DLC surface, allowing the formation of covalent bonds. The fluorinated peroxides used in this work belong to the class of the PFPE peroxides and to the class of the perfluorodiacyl (PFDA) peroxides. The effect of the fluorinated coatings on the DLC surface is studied using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), with contact angle (CA) measurements and, in particular, the friction forces are evaluated by means of lateral force microscopy (LFM).  相似文献   

5.
Diamond like carbon (DLC) thin films were deposited on p-type silicon (p-Si), quartz and ITO substrates by microwave (MW) surface-wave plasma (SWP) chemical vapor deposition (CVD) at different substrate temperatures (RT ∼ 300 °C). Argon (Ar: 200 sccm) was used as carrier gas while acetylene (C2H2: 20 sccm) and nitrogen (N: 5 sccm) were used as plasma source. Analytical methods such as X-ray photoelectron spectroscopy (XPS), FT-IR and UV–visible spectroscopy were employed to investigate the structural and optical properties of the DLC thin films respectively. FT-IR spectra show the structural modification of the DLC thin films with substrate temperatures showing the distinct peak around 3350 cm 1 wave number; which may corresponds to the sp2 C–H bond. Tauc optical gap and film thickness both decreased with increasing substrate temperature. The peaks of XPS core level C 1 s spectra of the DLC thin films shifted towards lower binding energy with substrate temperature. We also got the small photoconductivity action of the film deposited at 300 °C on ITO substrate.  相似文献   

6.
The failure mechanisms of graphene under nanoscale sliding conditions are examined using atomistic simulations to evaluate its use as a solid lubricant and to simultaneously answer principal questions regarding wear of lamellar films comprised of atomically-thin sheets. To determine the failure behavior of graphene and the impact of adhesion on wear and failure, an asperity is slid over a substrate-supported graphene film with various adhesion strengths. For a purely-repulsive asperity, the graphene never delaminates and lower substrate-membrane adhesion appears to reduce the overall damage to the graphene layer and permits the recovery of more of the load-bearing capability of the graphene post-tearing. When tri-layer graphene is benchmarked with a 2 nm repulsive asperity against an 86% sp3 content diamond-like-carbon (DLC) coating of the same thickness (1.0 nm), the graphene supports up to 8.5 times the normal load of DLC during indentation, and up to twice the normal load of DLC during sliding even after failure of one or more layers. The preliminary results indicate that graphene has promise as a solid lubricant with thickness on the order of nanometers due to its atomically-thin configuration and high load carrying capacity.  相似文献   

7.
《Ceramics International》2020,46(9):13743-13751
Low friction and surface hardness has become an important aspect to study and understand surface engineering of diamond like coating. Investigation of structural and mechanical properties of nitrogenated amorphous Diamond Like Carbon coating has been done. The cross-sectional microstructures, elemental compositions and various phase constituent of the coated layers under different processing conditions have been characterized. Films are deposited in presence of 5%–20% with the increasing rate of 5% and 40% of N2 partial pressure along with Ar gas. 20% N2 pressure shows a critical behavior in Raman spectroscopy and XPS. In this condition the film shows more uniform coating with vertical growth structures as well as brittle behavior. The micro-structural changes on the surface due to migration of N2 and its related surface properties have been examined. AFM studies clearly show that the percentage change in average roughness decreases to 17% as the film thickness increases at 20% N2 incorporation. The positive changes in its mechanical properties have been observed by Nano-indentation techniques. Significance of DLC coating in this condition is clearly seen with the increasing sp3compositions by XPS analysis. All results have been correlated and hence critical range of nitrogen partial pressure has been observed between 20%-23% to give similar sp3 fraction and hence properties that of pure DLC films.  相似文献   

8.
Films of diamond-like carbon containing up to 22 at.% silicon (DLC-Si) were deposited on to silicon substrates by low-frequency pulsed DC plasma activated chemical vapor deposition (PACVD). The influence of silicon doping on deposition rate, composition, bonding structure, hardness, stress, surface roughness and biocompatibility was investigated and correlated with silicon content. A mixture of methane and tetramethylsilane (TMS) was used for the deposition of DLC-Si films at a pressure of 200 Pa. The deposition rate increased with increasing TMS flow. The addition of silicon into the DLC film leads to an increase of sp3 bonding, as measured by Raman spectroscopy, and also resulted in lower stress and hardness values. The RMS surface roughness of the films was measured by atomic force microscopy and increased from 0.35 nm for DLC to 6.7 nm for DLC-Si (14 at.% Si) due to the surface etching by the H atoms. Biocompatibility tests were performed using MG-63 osteoblast-like cell cultures that were left to grow for 3 days and their proliferations were assessed by scanning electron microscopy. The results indicated a homogeneous and optimal tissue integration for both the DLC and the DLC-Si surfaces. This pulsed PACVD technique has been shown to produce biocompatible DLC and DLC-Si coating with potential for large area applications.  相似文献   

9.
Electronic and bonding properties of Me-based hydrogenated amorphous carbon (a-CH:Me, Me = Fe, Ni) thin films have been studied by X-ray absorption near-edge structure (XANES), valence-band photoemission (VB-PES) and Raman spectroscopy. Raman and XANES results show enhancement of the content of sp3-rich diamond-like carbon (DLC) by doping with Fe and Ni. The VB-PES spectrum of a-CH:Fe shows emergence of a prominent feature due to states of sp3-bonded clusters, indicating that a-CH:Fe induced enhancement of DLC structure. The nano-indentation measurement reveals that a-CH:Fe has a greatly enhanced hardness, while electrical resistance measurement shows that a-CH:Me reduces resistivity.  相似文献   

10.
The effects of thermal annealing and Si incorporation on the structure and properties of diamond-like carbon (DLC) films were investigated. As-deposited DLC film (DLC) and Si incorporated DLC film (Si-DLC), both with and without thermal annealing, were analyzed for bonding structure, residual stress, film thickness, elastic modulus and fracture properties using Raman spectroscopy, wafer curvature, nanoindentation, four-point bend fracture testing, and X-ray photoelectron spectroscopy (XPS). Raman spectroscopy clearly showed that thermal annealing of DLC films promotes more sp2 bonding character, whereas Si incorporation into the films promotes more sp3 bonding character. Interfacial fracture energies, film hardness and elastic modulus, and residual film stress were all found to vary strongly with the degree of sp3 bonding in the DLC film. These changes in mechanical properties are rationalized in terms of the degree of three dimensional inter-links within the atomic bond network.  相似文献   

11.
Microstructural and electrochemical characterization of diamond like carbon (DLC) ion beam-deposited on AlTiC (70 wt% Al2O3+30 wt% TiC) substrate has been carried out. Tapping mode atomic force microscopy (AFM) imaging showed that the island-like topography of DLC-coated substrates is similar to the un-coated one, indicating the uniform coverage of DLC without visible pinholes. Confocal micro-Raman analysis demonstrated that the total Raman intensity, as well as the ID/IG ratio, increases with the coating thickness. Electrochemical impedance spectra showed that with the increasing DLC coating thickness, a transition from one-time constant response to two-time constant response occurred when the coating thickness equals 5 nm (IS2), indicating the existence of micro-defects in the coatings which are invisible for AFM. More detailed analysis using the equivalent circuit model revealed that the charge transfer resistance (Rct) at electrolyte/substrate interface and the resistance (Rp) related to DLC coatings increase significantly with the coating thickness, while the double-layer capacitance (Cdl) and the capacitance (Cco) of DLC coatings decrease dramatically. All these phenomena can be interpreted in terms of the evolution of the subsurface diamond-like phase (sp3-bond) and the reduction of micro-defects in the DLC coatings with the growing film. As a result, an increase in the corrosion potential (Ec) with the DLC coating thickness was also detected using the Tafel technique. In consequence, the DLC coatings can improve significantly the anti-corrosion properties of AlTiC substrates when the coating thickness is more than a few tens of nanometres.  相似文献   

12.
In this work, the polishing‐induced contamination layer at the fused silica optics surface was studied with various interface analysis techniques: Secondary Ion Mass Spectroscopy (SIMS), Electron Probe Microanalysis (EPMA), X‐Ray Photoelectron Spectroscopy (XPS), and Inductively Coupled Plasma—Optical Emission Spectroscopy (ICP‐OES). Samples were prepared using an MRF polishing machine and cerium‐based slurry. The cerium and iron penetration and concentration were measured in the surface out of defects. Cerium is embedded at the surface in a 60 nm layer and concentrated at 1200 ppmw in this layer while iron concentration falls down at 30 nm. Spatial distribution and homogeneity of the pollution were also studied in the scratches and bevel using SIMS and EPMA techniques. We saw evidence that surface defects, such as scratches, are specific places that hold the pollutants. This overconcentration is also observed in the chamfer. These new insights into the polishing‐induced contamination of fused silica optics and it repartition have been obtained using various characterization methods. Advantages and disadvantages of each one are discussed.  相似文献   

13.
《Ceramics International》2022,48(12):17376-17384
A silicon/diamond-like carbon (Si/DLC) multilayer nanocomposite coating (MNC) was applied to the Ti–29Nb–13Ta?4.6Zr (TNTZ) alloy to improve its wear resistance and durability. The Si/DLC MNC on the TNTZ alloy demonstrated an extremely low wear rate of 6.2 × 10?10 mm3N?1mm?1. Moreover, the wear track depth after one million wear cycles was found to be only 220 nm, while the thickness of the entire coating was 370 nm. Furthermore, cell culture tests demonstrated that the Si/DLC MNC samples exhibited better biocompatibility than the TNTZ alloy samples. A quantitative comparison of the cell adhesion behavior of the TNTZ and Si/DLC MNC samples indicated that 60% of the surface of the Si/DLC MNC sample was covered with cells, which was approximately twice the surface of the TNTZ alloy sample covered with cells. In addition, no dead cells were observed on the Si/DLC MNC samples, indicating that the Si/DLC MNC samples exhibited no toxic effects against the MC3T3 cells. These results indicate that the Si/DLC MNC enhances the wear resistance of the TNTZ alloy and improves its biofunctionality, thus making it a potential candidate for use in long-term implant applications.  相似文献   

14.
Diamond material and its smooth coatings are used for very low wear and relatively low friction. Major limitations of the true diamond coatings are that they need to be deposited at high temperatures, can only be deposited on selected substrates, and require surface finishing. Hard amorphous carbon (a-C), commonly known as diamondlike carbon (DLC), coatings exhibit mechanical, thermal and optical properties close to that of diamond. These can be deposited with a large range of thicknesses by using a variety of deposition processes, on variety of substrates at or near room temperature. The coatings reproduce substrate topography avoiding the need of post finishing. Friction and wear properties of some DLC coatings can be very attractive for tribological applications. The largest industrial application of these coatings is in magnetic storage devices. Recent developments in the chemical, mechanical and tribological characterization of the ultra-thin coatings are reviewed in this paper. The prevailing atomic arrangement in the DLC coatings is amorphous or quasi-amorphous with small diamond (sp3), graphite (sp2) and other unidentifiable micro- or nanocrystallites. The mechanical and tribological properties of the DLC coatings are dependent upon the deposition technique. Thin coatings deposited by filtered cathodic arc, ion beam and ECR-CVD hold a promise for tribological applications. Coatings as thin as 5 nm in thickness provide wear protection.  相似文献   

15.
Chromium and copper-doped diamond-like carbon (DLC:Cr:Cu) films were deposited on SKH 51 tool steel. We have prepared multilayers of DLC:Cr and DLC:Cu by cathodic arc evaporation process using chromium (Cr) and copper (Cu) target arc sources to provide Cr and Cu in the DLC. Acetylene reactive gases were also activated at a pressure of 5 mTorr to 25 mTorr and a temperature fixed at 180 °C to provide the DLC. The resulting DLC:Cr:Cu film contained CrxCuy as well as CrxCy nanoparticles vital for the film mechanical properties. The crystal structure was investigated using X-ray diffraction (XRD) and transmission electron microscopy, while the surface morphology and chemical composition were studied by field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The process parameters were compared by studying the various mechanical properties of the films such as microhardness and residual stress. The result of this process enhanced the DLC:Cr:Cu composite coatings for high toughness and lower friction coefficient (0.08). The profiles of sp3/sp2 (XPS) ratios corresponded to the change of microhardness profile by varying the pressure of the hydrocarbon gases (C2H2).  相似文献   

16.
Amorphous BC4N thin films with a thickness of ∼ 2 μm have been deposited by Ion Beam Assisted Deposition (IBAD) on hard steels substrates, in order to study the wear behavior under high loads and the applicability as protective coatings. The bonding structure of the a-BC4N film was assessed by X-ray Absorption Near Edge Spectroscopy (XANES) and Infrared Spectroscopy, indicating atomic mixing of B–C–N atoms, with a proportion of ∼ 70% sp2 hybrids and ∼ 30% sp3 hybrids. Nanoindentation shows a hardness of ∼ 18 GPa and an elastic modulus of ∼ 170 GPa. A detailed tribological study is performed by pin-on-disk tests, combined with spectromicroscopy of the wear track at the coating and wear scar at pin. The tests were performed at ambient conditions, against WC/Co counterface balls under loads up to 30 N, with the sample rotating at 375 rpm. The coatings suffer a continuous wear, at a constant rate of 2 × 10 7 mm3/Nm, without catastrophic failure due to film spallation, and show a coefficient of friction of ∼ 0.2.  相似文献   

17.
The corrosion spot density and contact–start–stop tribological properties that correlate to mechanical properties, electrical resistivity and lubricant bonded ratio of DLC overcoats on different disks of various surface roughness were investigated. DLC overcoats of hydrogenated carbon (CH) and nitrogenated carbon (CN) films were deposited by ion beam deposition (IBD) and sputter, respectively. Results show that the intensity ratio I(D)/I(G) increases with decreasing IBD-CH film thickness and increasing N2 concentration of sputtered-CN layer, which implies that the films prepared at higher N2 concentration contain a relatively lower sp3 bonded carbon. The composite hardness and Young's modulus of DLC films decrease with decreasing IBD-CH thickness and increasing N2 concentration of sputtered-CN layers. Compared to disk overcoats deposited with only IBD-CH of comparable thickness, the lubricant bonded ratio is dramatically increased from 12 to 30% when the 0.5 nm CN is deposited on IBD-CH film. By increasing the N2 concentration in the CN layer from 10 to 50 at.%, the electrical resistivity decreased from 3.6 to 0.8 kΩ and the lubricant bonded ratio increased from 30 to 46%. The corrosion spots density of sputtered-CN film surface decreases with increasing N2 concentration. It is concluded that the dual layer of 1.5 nm IBD-CH/0.5 nm sputtered-CN with 30% N2 deposition has the best integrated performance of corrosion resistance and CSS tribological properties.  相似文献   

18.
Effects of an ultrathin (~ 1 nm) diamond-like carbon (DLC) layer in single-layer organic light-emitting devices (OLEDs) that consist of ITO/(TPD-Alq3 doped PVK)/Al were investigated. DLC layers deposited by using Nd:YAG laser at laser wavelengths of 355 nm were high in sp3 content and resistivity (DLCUV) while that of 1064 nm laser were lower in sp3 content and resistivity (DLCIR), as characterized by Raman spectroscopy and resistivity measurements. Although emission were obtained for all the devices, only the device of ITO/DLCUV/(TPD-Alq3 doped PVK)/Al exhibited enhanced current density and brightness with lower turn-on voltage as compared to a standard device. Devices of ITO/DLCIR/(TPD-Alq3 doped PVK)/Al and ITO/(TPD-Alq3 doped PVK)/DLCUV/Al showed poor current and brightness characteristics but failed at higher applied voltage. The enhance performance of device with high resistivity/sp3 DLC film suggests the mechanisms of barrier reduction by sufficiently thin insulating layer which increase the probability of tunneling of carriers at ITO and PVK interface.  相似文献   

19.
The corrosion performance of commercial hard disk media which was subjected to bi-level surface modification has been reported. The surface treatment was carried out by bombarding the surface of the magnetic media with C+ ions at 350 eV followed by 90 eV using filtered cathodic vacuum arc (FCVA). The energy and embedment depth of the impinging C+ ions were adjusted by applying an optimized bias to the substrate and simulated by a Stopping and Range of Ions in Matter (SRIM) code which predicted the formation of a graded atomically mixed layer at the carbon-media interface. Cross-section transmission electron microscopy (TEM) revealed the formation of a 1.8 nm dense nano-layered carbon overcoat structure on the surface of the media. Despite an ~ 33% reduction in the thickness, the bi-level surface modified disk showed corrosion performance similar to that of a commercially manufactured disk with a thicker carbon overcoat of 2.7 nm. This improvement in the corrosion/oxidation resistance per unit thickness can be attributed to the formation of a dense and highly sp3 bonded carbon layer, as revealed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. This study demonstrates the effectiveness of the bi-level surface modification technique in forming an ultra-thin yet protective overcoat for future hard disks with high areal densities.  相似文献   

20.
Using a versatile atmospheric-pressure helium plasma jet, diamond-like carbon (DLC) films were etched in ambient air. We observed that the DLC films are etched at a nominal rate of around 60 nm/min in the treated area (230 μm in diameter) during a 20-min exposure. The etching rate increased after the initial 10-min exposure. During this period, the flat DLC surface was structurally modified to produce carbon nanostructures with a density of ~ 2.4 × 1011 cm 2. With this increase in surface area, the etching rate increased. After 20 min, the DLC film had a circular pattern etched into it down to the substrate where silicon nanostructures were observed with sizes varying from 10 nm to 1 μm. The initial carbon nanostructure formation is believed to involve selective removal of the sp2-bonded carbon domains. The carbon etching results from the formation of reactive oxygen species in the plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号