首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
About 10 million tonnes of fly ash are produced yearly as waste from coal fired thermal power plants in Turkey. Only a small portion of this waste is utilized as a raw material in the production of cement and concrete. In this study, Seyitömer power plant fly ash was investigated in the production of light weight bricks. Fly ash, sand and hydrated lime mixtures were steam autoclaved under different test conditions to produce brick samples. An optimum raw material composition was found to be a mixture of 68% fly ash, 20% sand and 12% hydrated lime. The optimum brick forming pressure was 20 MPa. The optimum autoclaving time and autoclaving pressure were found 6 h and 1.5 MPa, respectively. The compressive strength, unit volume weight, water absorption and thermal conductivity of the fly ash–sand–lime bricks obtained under optimum test conditions are 10.25 MPa, 1.14 g/cm3, 40.5% and 0.34 W  m−1 K−1 respectively. The results of this study suggested that it was possible to produce good quality light weight bricks from the fly ash of Seyitömer power plant.  相似文献   

2.
The influences of the batch ingredients and the autoclaving processes on the properties of autoclaved sand–lime brick from low SiO2 content copper tailing were studied. The results show that the copper tailing with low content of SiO2 can be used to produce autoclaved sand–lime bricks meeting GB11945-1999 for Mu 15 sand–lime brick, if only the proportion of the copper tailing in the brick batch does not exceed 50% (% by mass) and appropriate proportions of river sand and sand powder are added to compensate for the low SiO2 content. XRD and SEM analyses show that the main hydrothermal reaction products in the brick are 0.9 nm, 1.1 nm and 1.4 nm tobermorite phases, and the andradite in the copper tailing nearly does not take part in the autoclaving reaction.  相似文献   

3.
Since its abandonment 185 years ago, the XII century Santa Maria de Bonaval Monastery located in Guadalajara (Spain) has suffered significant deterioration: first the roof was lost, followed by partial collapse of the walls, moisture infiltration and extensive loss of stone surfaces due to salt weathering. This case study is a clear example of the incompatibility of some building materials: in this case, the combination of sulphate-bearing mortars and magnesium-rich stone and mortars leading to extensive weathering by magnesium sulphate crystallization. Samples of plaster, bedding and core mortars, stone fragments and flakes, salt crust and powders were collected, as well stone samples from the historic quarries located close to the Monastery. Characterization by XRD (X-ray diffraction), ESEM-EDS (environmental scanning electron microscopy with energy dispersive X-ray spectroscopy) shows that the most important stone-type used in the structure, dolostone, is mainly affected by magnesium sulphate salts (epsomite, MgSO4 · 7H2O), although other salts as kalicinite (KHCO3) and mercallite (KHSO4) were also detected. The connected porosity and pore size distribution determined by mercury intrusion porosimetry and capillarity behaviour suggest that the core mortar could easily be dissolved and the stone, plaster and bedding mortars are able to transport infiltrating solutions, giving rise to the precipitation of magnesium sulphate in the mortar joints and over the surface of the stone. Due to their chemical incompatibility, the combination of sulphate and magnesium-bearing mortars and stone with high magnesium content appears to be problematic and should be avoided in future restoration work.  相似文献   

4.
Previous studies have been carried out on calcined phosphogypsum (PG) for making the building materials. The present study was focused on autoclaved PG and its use in making load-bearing wall bricks. Autoclaved PG was prepared from original waste PG with steam pre-treatment. The crystalline phase, morphology, and thermal characteristics of original waste PG and autoclaved PG were investigated by XRD, SEM, and SDT. Then bricks of the size of Chinese standard brick were prepared from different types of PG in the PG-fly ash–lime–sand system. Results showed that the compressive strength of bricks from autoclaved PG by lower-pressure steam of 0.12 MPa, 120 °C for 16 h was much higher. The flexural strength and compressive strength of the bricks could reach 4.0 MPa and 15.0 MPa, respectively. The durability of the bricks was investigated by 15 freezing–thawing cycles at temperatures from ?20 °C to 20 °C, and the weight loss was only 0.029% after all of cycles. Hemihydrates (CaSO4 · 0.5H2O) were dehydrated products from dihydrates in original PG with lower-pressure steam treatment, and hemihydrates were susceptible to absorbing the humidity and were transformed into densified re-crystallization gypsum (CaSO4 · 2H2O) that contributed to the final strength of bricks. Microstructural characteristics of bricks were investigated by XRD and SEM. Tobermorite was the significant hydrated product, which contributed to the strength of bricks. The use of autoclaved PG for making load-bearing wall bricks was recommended instead of conventional burnt clay bricks.  相似文献   

5.
Ottoman mortar is the long-established binding material used for centuries and there are many historical buildings as evidence of its use by Ottomans in Erzurum (Eastern Turkey). The physico-chemical and microscopic properties of the Ottoman mortars in Erzurum have been studied in detail as part of an investigation of the mineral raw materials present in the territory of Turkey. For this purpose, SEM, XRD and EDS analyses of six main types of mortars were carried out showing the presence of organic fibers and calcite, quartz and muscovite minerals. The chemical analyses of the specimens showed that higher SiO2 + Al2O3 + Fe2O3 contents yielded in higher values of hydraulicity and cementation indices. A significant result of this investigation was that mortars with higher hydraulicity and cementation indices had higher compressive strengths. Most probably this is the main reason why historical Ottoman buildings were resistant against serious earthquakes.  相似文献   

6.
This work aims to evaluate the possibilities of cementitious materials reinforcement by continuous alkaline resistant AR glass or carbon yarns. Bond flexural tests and flexural tests on 7 × 7 × 28-cm specimens were performed at various ages of the mortar and with various layouts and, volume fractions of yarn. The flexural tests showed the capacity of yarn to improve the strength and ductility of the mortar. A definition of the effectiveness of a yarn as reinforcement is given as proportional to the ratio of the post-cracking maximal load on the product of the strength of yarn and the volume fraction of yarns. The effectiveness of a yarn seems to depend on its structure: the one of the carbon yarn, made up of micrometric filaments, is lower than the one of the glass yarn, made up of millimetric strands. Losses of strength and ductility were observed between 28 days and a year for the glass yarn-reinforced mortars. For the carbon yarn-reinforced mortars, post-cracking strength increases with time.  相似文献   

7.
The depletion of non-renewable resources has become an alarming issue nowadays. Many environmentalists and researchers have been investigating the use of waste materials as a renewable resource for use especially as raw materials in construction. This paper reports on the potential use of waste rice husk ash (RHA) and expanded polystyrene (EPS) beads in producing lightweight concrete bricks. The RHA was used as a cementitious material since it is a lightweight reactive pozzolanic material. RHA was used as partial cement replacement, while the EPS was used as partial aggregate replacement in the mixes. Bricks of 215 mm × 102.5 mm × 65 mm in size were prepared in this study. The engineering properties of the bricks were investigated. Among the properties studied were hardened concrete density, compressive strength and water absorption of the EPS RHA concrete bricks. Scanning electron microscopy (SEM) analysis was also performed on the brick samples. Four types of curing conditions were employed in this study. These include full water curing, air dry curing, 3-day curing and 7-day curing. It was found that the properties of the bricks are mainly influenced by the content of EPS and RHA in the mix and also the curing condition used.  相似文献   

8.
The addition of superplasticizers is an important approach to prepare high performance cement-based materials. The effect of polynaphthalene series superplasticizer (PNS) and polycarboxylate type superplasticizer (PC) on early-age cracking and volume stability of cement-based materials was investigated by means of multi-channel ellipse ring shrinkage cracking test, free shrinkage and strength test. The general effect of PNS and PC is to increase initial cracking time of mortars, and decrease cracking sensitivity of mortars. As for decreasing cracking sensitivity of mortars, PC > H-UNF (high-thickness-type PNS) > C-UNF (common-thickness-type PNS). To incorporate superplasticizers is apparently to increases free shrinkage of mortars when keeping the constant W/B ratio and the content of cement pastes. As for the effect of controlling volume stability of mortars, PC > C-UNF > H-UNF. Maximum crack width of mortars with PC is lower, but the development rate of maximum crack width of mortars with H-UNF is faster in comparison with control mortars. Flexural and compressive strength of mortars and concretes at 28 days increased with increasing superplasticizer dosages under drying conditions. C-UNF was approximate to H-UNF, but PC was superior to PNS in the aspect of increasing strength of cement-based materials.  相似文献   

9.
The technical quality of two compositionally different groups of solid bricks fired between 800 and 1000 °C was evaluated. Five weight percentage of fly ash was added to both groups and they were compared with similar bricks with no added fly ash.The textures of the bricks with fly ash were very similar to the textures of those without it, except that the samples with the additive contained spherical fly ash particles with diameters ranging from 0.1 to 10 μm. These particles led to a reduction in the density of the bricks and a substantial improvement in their durability, with less decay being caused by salt crystallization in the pores. This is because fly ash causes a reduction in the number of micropores, the pores that make porous materials most vulnerable to salt-induced decay. Use of this additive could have practical implications as a means of recycling and for achieving cost savings in brick production.  相似文献   

10.
Curing techniques and curing duration have crucial effects on the strength and other mechanical properties of mortars. Proper curing can protect against moisture loss from fresh mixes. The objective of this experimental work is to examine the compressive strength of ordinary Portland cement mortars (OMs) under various curing regimes and cement fineness. Six different curing methods including water, air, water heated, oven heated, air–water, and water–air were applied to the specimens and also six groups of mortars were used. The results showed that the highest and lowest compressive strengths are attributed to the specimens of OPC mortar water cured using grounded OPC for duration of 6 h (OM–G6–wc) and OPC mortar air cured under room temperature with oven heated after demoulding of the specimens at 60 °C for duration of 20 h (OM–OH–ac), respectively. The maximum levels obtained of compressive strengths at 7, 28, and 90 days are 57.5, 70.3, and 76.0 MPa, respectively.  相似文献   

11.
The development of new binders, as an alternative to traditional cement, by the alkaline activation of industrial by-products (i.e. ground granulated slag and fly ash) is an ongoing research topic in the scientific community [Puertas F, Amat T, Jimenez AF, Vazquez T. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem Concr Res 2003;33(12): 2031–6]. The aim of this study was to investigate the feasibility of using and alkaline activated ground Turkish slag to produce a mortar without Portland cement (PC).Following the characterization of the slag, mortar specimens made with alkali-activated slag were prepared. Three different activators were used: liquid sodium silicate (LSS), sodium hydroxide (SH) and sodium carbonate (SC) at different sodium concentrations. Compressive and flexural tensile strength of alkali-activated slag mortar was measured at 7-days, 28-days and 3-months. Drying shrinkage of the mortar was measured up to 6-months. Setting times of the alkali-activated slag paste and PC paste were also measured.Setting times of LSS and SH activated slag pastes were found to be much slower than the setting time of PC paste. However, slag paste activated with SC showed similar setting properties to PC paste.LSS, SH and SC activated slag mortar developed 81, 29, and 36 MPa maximum compressive strengths, and 6.8, 3.8, and 5.3 MPa maximum flexural tensile strengths at 28-days. PC mortar developed 33 MPa compressive strength and 5.2 MPa flexural tensile strength. LSS and SH activated slag mortars were found to be more brittle than SC activated slag and PC mortars.Slag mortar made with LSS had a high drying shrinkage, up to six times that of PC mortar. Similarly, slag mortar made with SH had a shrinkage up to three times that of PC mortar. However, SC activated slag mortar had a lower or comparable shrinkage to PC mortar. Therefore, the use of SC as an activator for slag mortar is recommended, since it results in adequate strength, similar setting times to PC mortar and comparable or lower shrinkage.  相似文献   

12.
This paper presents a study of the properties and behavior of cement mortar with clinoptilolite which is one of the most common zeolite minerals found in nature. Six mortar mixtures were prepared by replacing the Portland cement with 0%, 5%, 10%, 15%, 20% and 30% clinoptilolite by weight. Test results showed that water demand, soundness and setting times of the cement pastes increased with the increase of clinoptilolite content. Compressive and flexural strength of the mortars containing clinoptilolite were higher than the control mixture. Dry unit weight of the mortars with clinoptilolite was lower than the control mortar. Clinoptilolite replacement decreased water absorption and porosity of the mortars. The control mortar showed less durability to carbonation compared to the mortars made with clinoptilolite at the end of carbonation tests. Freeze–thaw resistance of the mortars containing 5% clinoptilolite was higher than control mortar. The effect of clinoptilolite incorporation on high-temperature resistance seemed to be dependent on amount of clinoptilolite, temperature level, and the cooling method.  相似文献   

13.
Portland cement and high alumina cement mortar specimens were exposed to cycles of drying at 40 °C, cooling at 20 °C and immersion in Na2SO4 and MgSO4 solutions at 20 °C. The resistance of mortars was evaluated by visual inspection and by measuring the change in surface hardness and weight of the specimens. The decrease and increase in surface hardness were observed in both mortars by treating with Na2SO4 and MgSO4 solutions, respectively. The combined effect of the chemical and physical attack by Na2SO4 was attributed to the complete failure of Portland cement mortar, whereas only marginal damage of high alumina cement mortar was believed owing to physical salt crystallization. No damage was observed in both mortars treated with MgSO4 solution.  相似文献   

14.
Quality control of the performance of renderings made up of construction and demolition waste (CDW) recycled aggregates needs to be improved as CDW recycling can prove to be an alternative to waste disposal in developing countries. This experimental work focuses the effectiveness of a mix design method to control and analyze the recycled aggregate composition influence on the performance of mortars and renderings. Leveling time in the placement of renderings was also studied. The mix design method of mortars takes into account two parameters: the “aggregates and plasticizing materials to cement ratio” and “the total materials finer than 75 μm” in the dry mortar. In Part I of this study [Construction and Building Materials, submitted to publishing] the basic properties of mortars of several mixes were analyzed for a constant cement content around 155 ± 10 kg/m3. The performance of renderings is the scope of Part II of this paper. The initial bond strength and visible drying cracks under laboratory conditions were first analyzed for renderings applied on masonry panels with two times of leveling during placement. After five months, accelerated aging of renderings was carried out. Ten wetting–drying cycles upon thermal shock, from 80 °C to laboratory room temperature, were applied to the masonry panels, and cracks were assessed for each cycle. Bond tensile strength was not affected by the thermal shock, but additional cracks were seen on the renderings. The mix design parameters of the mortars and their hardened state properties were related to the cracking of the renderings. The results show that the parameters “total materials finer than 75 μm” and “aggregate to cement ratio” can be used for the mix design of mortars with recycled CDW aggregates. The increase in tensile strength and the reduction in the content of total fines smaller than 75 μm have proved efficient parameters to control cracking of renderings under thermal shock. Leveling time during rendering placement was a secondary parameter for cracking behavior.  相似文献   

15.
The purpose of this study is to examine the basic properties of polyester mortars using a fine tailings (FT) from an abandoned mine as a filler. FT with sizes of 10–69 μm is obtained through the centrifugal separation of tailing (TA), and tested for such basic properties, as particle shape, fineness of size distribution, liquid resin absorption, and heavy metal leaching. Polyester mortars with FT and ground calcium carbonate (GC) are prepared with various filler-(filler + binder) ratios and replacements of GC with FT, and tested for working life, flexural and compressive strengths, and chemical corrosion resistance. As a result, FT has almost the same properties as GC in terms of particle shape, fineness of size and liquid resin absorption. The working life of polyester mortars is prolonged with an increased filler-(filler + binder) ratio and replacement of GC with FT. From the vantagepoint of the strength development of the polyester mortars with FT, it is recommended that the filler-(filler + binder) ratio and replacement of GC with FT should be controlled at 50% or less. Mass and strength changes are generally lower in mortars containing FT than in those containing GC in all chemical solutions.  相似文献   

16.
In the present paper crushed fired brick waste, known as grog, was used in mixtures with clayey body to make typical red ceramics for bricks. The effect of the grog addition up to 20 wt% on the extrusion stage as well as on properties and microstructure of bricks fired at 700 °C was evaluated. The results indicate that the extrusion of the unfired clayey body was not impaired by the grog addition. Additions above 5 wt% decreased the mechanical strength of both the dry body and the fired ceramic pieces. This is associated with the increase in porosity during the firing stage due to the grog behavior.  相似文献   

17.
Experience shows that renderings produced with natural sands or construction and demolition waste (CDW) recycled aggregates could have a tendency to poor performance, due primarily to the variable quality of the sands, the absence of a well established mix design method for mortars, and other factors such as façade design, substrate quality and the placement technique. This paper focuses some of those factors, particularly the effectiveness of a mix design method for the control and analysis of the influence of the recycled aggregate composition on the properties of mortars and renderings performance. The leveling time of renderings was also studied. The mix ratio of Portland cement, natural fine sand and laboratory recycled sands – from ceramic blocks, concrete bricks and milled mortar – was defined by a mix design method previously studied. The method takes into account two parameters for the mix design of mortars: the “aggregates and plasticizing materials to cement ratio” and “the total materials finer than 75 μm” in the dry mortar. This study analyzes the effectiveness of the second parameter for the control of the performance of mortars and renderings. In Part I, results show how the geology of the river and CDW recycled sands and the “total material finer than 75 μm” parameter can be correlated in order to explain the properties of mortars, as the cement content is kept constant. The variations in water requirement and physical and mechanical properties of mortars were analyzed, namely drying shrinkage, compressive strength, tensile strength and compressive elastic modulus. The performance of the renderings will be discussed in Part II of this paper.  相似文献   

18.
The seismic rehabilitation of stone masonry buildings requires a quantitative understanding of the constituent materials under variable rates of loading. The stress-rate sensitivity of cementitious composites and rock has been intensively investigated. However, the literature on the impact resistance of masonry joints is scarce, particularly with regard to the bond behaviour using fibre reinforced mortars. This paper describes the stress-rate sensitivity of masonry units bound with fibre reinforced Type S mortars. A drop-weight impact machine was used to generate stress rates in the range of 1 kPa/s–108 kPa/s. The dynamic impact factor and stress-rate sensitivity were evaluated for the flexural strength of the mortar and the bond strength and further, the pattern of failure was noted for each mix and loading rate. Polypropylene micro-fibres were incorporated as discrete reinforcement at 0%, 0.25% and 0.5% volume fraction into the mortar. Results show that the impact resistance of the masonry units increased in the presence of fibres. However, the stress-rate sensitivity of the bond strength decreased with an increase in the fibre content. Also, where as the mode of failure in those masonry units bound with plain mortars was through fracture at the mortar-block interface, the addition of fibres transferred the failure plane to within the masonry block.  相似文献   

19.
This research examines the compressive strength of mortar and how the filler effect and pozzolanic reaction of ground palm oil fuel ash (POFA) contribute to this strength. POFA and river sand were ground to three different particle sizes and used to replace Type I Portland cement at 10–40% by weight of binder to cast the mortar. The compressive strengths of ground POFA and ground river sand mortars were determined at various ages between 7 and 90 days. The results showed that the compressive strength of mortar due to the filler effect of ground river sand was nearly constant during the 7–90 day period for a specified replacement rate of cement. However, the compressive strength of mortar due to the filler effect tended to increase slightly with increased cement replacement. The pozzolanic reaction of ground POFA increased with increasing particle fineness of ground POFA, replacement rate of cement, and age of the mortar. The compressive strength contribution from the pozzolanic reaction of ground POFA was much more pronounced than the contribution from the filler effect when the smallest sizes of both materials were considered.  相似文献   

20.
With the objective of reducing the negative impacts on environment and utilizing the secondary resource of tailings, the possibility of making construction bricks by using the hematite tailings from western Hubei province of China was investigated. Besides hematite tailings, the additives of clay and fly ash were added to the raw materials to improve the brick quality. Through the process of mixing, forming, drying and firing, the bricks were produced. The optimum conditions were found to be that the hematite tailings content were as high as 84%, forming water content and forming pressure were respectively in the range of 12.5–15% and 20–25 MPa, and the suitable firing temperature was ranged from 980 to 1030 °C for 2 h. Under these conditions, the mechanical strength and water absorption of the reddish fired specimens were 20.03–22.92 MPa and 16.54–17.93%, respectively, and the other physical properties and durability were well conformed to Chinese Fired Common Bricks Standard (GB/T5101-2003). The phases and morphologies of the green tailings and fired specimen were characterized by XRD and SEM. The results showed that the main mineral phases of the product were hematite, quartz, anorthite and tridymite, which were principally responsible for the mechanical strength of bricks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号