首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuisance blue-green algal blooms contribute to aesthetic degradation of water resources by means of accelerated eutrophication, taste and odor problems, and the production of toxins that can have serious adverse human health effects. Current field-based methods for detecting blooms are costly and time consuming, delaying management decisions. Methods have been developed for estimating phycocyanin concentration, the accessory pigment unique to freshwater blue-green algae, in productive inland water. By employing the known optical properties of phycocyanin, researchers have evaluated the utility of field-collected spectral response patterns for determining concentrations of phycocyanin pigments and ultimately blue-green algal abundance. The purpose of this research was to evaluate field spectroscopy as a rapid cyanobacteria bloom assessment method. In-situ field reflectance spectra were collected at 54 sampling sites on two turbid reservoirs on September 6th and 7th in Indianapolis, Indiana using ASD Fieldspec (UV/VNIR) spectroradiometers. Surface water samples were analyzed for in-vitro pigment concentrations and other physical and chemical water quality parameters. Semi-empirical algorithms by Simis et al. [Simis, S., Peters, S., Gons, H. (2005). Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. American Society of Limnology and Oceanography 50(11): 237–245] were applied to the field spectra to predict chlorophyll a and phycocyanin absorption at 665 nm and 620 nm, respectively. For estimation of phycocyanin concentration, a specific absorption coefficient of 0.0070 m2 mg PC-1 for phycocyanin at 620 nm, aPC?(620), was employed, yielding an r2 value of 0.85 (n = 48, p < 0.0001), mean relative residual value of 0.51 (σ = 1.41) and root mean square error (RMSE) of 19.54 ppb. Results suggest this algorithm could be a robust model for estimating phycocyanin. Error is highest in water with phycocyanin concentrations of less than 10 ppb and where phycocyanin abundance is low relative to chlorophyll a. A strong correlation between measured phycocyanin concentrations and biovolume measurements of cyanobacteria was also observed (r = 0.89), while a weaker relationship (r = 0.66) resulted between chlorophyll a concentration and cyanobacterial biovolume.  相似文献   

2.
《Displays》2006,27(3):124-129
Inkjet-printed greenish color filter layer for the application of active-matrix TFT-LCD had been significantly fabricated by the modified inkjet printing technology. The greenish ink with nano-particle pigments was injected in the stripe-type pattern with 90 μm in width and 250 μm in length by pre-designed inkjet head and driving system, and only green color was tested. The height of transparent rib wall, prepared by lithographic processes, on black matrix is 5.0 μm. The chromatic coordinates of color filter with greenish subpixel patterns in CIE 1931 standard diagram can achieve in the region of x=0.3095±0.04, y=0.5912±0.04, brightness of Y=58.887 for 50 droplets and x=0.3103±0.04, y=0.5784±0.04, brightness of Y=60.328 for 41 droplets. The structural surface morphologies of the greenish subpixel patterns remain homogenous, smooth and flatten.  相似文献   

3.
Variation in the foliar chemistry of humid tropical forests is poorly understood, and airborne imaging spectroscopy could provide useful information at leaf and canopy scales. However, variation in canopy structure affects our ability to estimate foliar properties from airborne spectrometer data, yet these structural affects remain poorly quantified. Using leaf spectral (400–2500 nm) and chemical data collected from 162 Australian tropical forest species, along with partial least squares (PLS) analysis and canopy radiative transfer modeling, we determined the strength of the relationship between canopy reflectance and foliar properties under conditions of varying canopy structure.At the leaf level, chlorophylls, carotenoids and specific leaf area (SLA) were highly correlated with leaf spectral reflectance (r = 0.90–0.91). Foliar nutrients and water were also well represented by the leaf spectra (r = 0.79–0.85). When the leaf spectra were incorporated into the canopy radiative transfer simulations with an idealistic leaf area index (LAI) = 5.0, correlations between canopy reflectance spectra and leaf properties increased in strength by 4–18%. The effects of random LAI (= 3.0–6.5) variation on the retrieval of leaf properties remained minimal, particularly for pigments and SLA (r = 0.92–0.93). In contrast, correlations between leaf nitrogen (N) and canopy reflectance estimates decreased from r = 0.87 at constant LAI = 5 to r = 0.65 with randomly varying LAI = 3.0–6.5. Progressive increases in the structural variability among simulated tree crowns had relatively little effect on pigment, SLA and water predictions. However, N and phosphorus (P) were more sensitive to canopy structural variability. Our modeling results suggest that multiple leaf chemicals and SLA can be estimated from leaf and canopy reflectance spectroscopy, and that the high-LAI canopies found in tropical forests enhance the signal via multiple scattering. Finally, the two factors we found to most negatively impact leaf chemical predictions from canopy reflectance were variation in LAI and viewing geometry, which can be managed with new airborne technologies and analytical methods.  相似文献   

4.
Most remote sensing algorithms for phytoplankton in inland waters aim at the retrieval of the pigment chlorophyll a (Chl a), as this pigment is a useful proxy for phytoplankton biomass. More recently, algorithms have been developed to quantify the pigment phycocyanin (PC), which is characteristic of cyanobacteria, a phytoplankton group of relative importance to inland water management due to their negative impact on water quality in response to eutrophication.We evaluated the accuracy of three published algorithms for the remote sensing of PC in inland waters, using an extensive database of field radiometric and pigment data obtained in the Netherlands and Spain in the period 2001–2005. The three algorithms (a baseline, single band ratio, and a nested band ratio approach) all target the PC absorption effect observed in reflectance spectra in the 620 nm region. We evaluated the sensitivity of the algorithms to errors in reflectance measurements and investigated their performance in cyanobacteria-dominated water bodies as well as in the presence of other phytoplankton pigments.All algorithms performed best in moderate to high PC concentrations (50–200 mg m? 3) and showed the most linear response to increasing PC in cyanobacteria-dominated waters. The highest errors showed at PC < 50 mg m? 3. In eutrophic waters, the presence of other pigments explained a tendency to overestimate the PC concentration. In oligotrophic waters, negative PC predictions were observed. At very high concentrations (PC > 200 mg m? 3), PC underestimations by the baseline and single band ratio algorithms were attributed to a non-linear relationship between PC and absorption in the 620 nm region. The nested band ratio gave the overall best fit between predicted and measured PC. For the Spanish dataset, a stable ratio of PC over cyanobacterial Chl a was observed, suggesting that PC is indeed a good proxy for cyanobacterial biomass. The single reflectance ratio was the only algorithm insensitive to changes in the amplitude of reflectance spectra, which were observed as a result of different measurement methodologies.  相似文献   

5.
In this paper, a novel single-chip MEMS capacitive microphone is presented. The novelties of the method relies on the moveable aluminum (Al) diaphragm positioned over the backplate electrode, where the diaphragm includes a plurality of holes to allow the air in the gap between the electrode and the diaphragm to escape and thus reducing acoustical damping in the microphone. Spin-on-glass (SOG) was used as a sacrificial and isolating layer. Backplate is monocrystalline silicon wafer, that it is more stiff. This work will focus on design, simulation, fabrication and characterization of the microphone. The structure has a diaphragm thickness of 3 μm, a diaphragm size of 0.5 mm × 0.5 mm, and an air gap of 1.0 μm. The results show that the pull-in voltage is 105 V, the initial stress of evaporated aluminum diaphragm is around 1500 MPa and the zero bias capacitance of microphone is 2.12 pF. Comparing with the previous works, this microphone has several advantages: the holes have been made on diaphragm, therefore no need of KOH etching to make back chamber, in this way the chip size of each microphone is reduced. The fabrication process uses minimal number of layers and masks to reduce the fabrication cost.  相似文献   

6.
The planar Hall effect (PHE) sensor with a junction size of 3 μm × 3 μm for a single micro-bead detection has been fabricated successfully using a typical spin-valve thin film Ta(5)/NiFe(16)/Cu(1.2)/NiFe(2)/IrMn(15)/Ta(5) nm. The PHE sensor exhibits a sensitivity of about 7.2 μV Oe?1 in the magnetic field range of ±7 Oe approximately. We have performed an experiment to illustrated the possibility of single micro-bead detection by using a PHE sensor. A single micro-bead of 2.8 μm diameter size is secluded from 0.1% dilute solution of the Dynabeads® M-280 dropped on the sensor surface and is located on the sensor junction by using a micro magnetic needle. The comparison of the PHE voltage profiles in the field range from 0 to 20 Oe in the absence and presence of a single micro-bead identifies a single Dynabeads® M-280, the maximal signal change as large as ΔV  1.1 μV can be obtained at the field ~6.6 Oe. The results are well described in terms of the reversal of a basic single domain structure.  相似文献   

7.
《Information and Computation》2007,205(7):1078-1095
Assume that G = (V, E) is an undirected graph, and C  V. For every v  V, denote Ir(G; v) = {u  C: d(u,v)  r}, where d(u,v) denotes the number of edges on any shortest path from u to v in G. If all the sets Ir(G; v) for v  V are pairwise different, and none of them is the empty set, the code C is called r-identifying. The motivation for identifying codes comes, for instance, from finding faulty processors in multiprocessor systems or from location detection in emergency sensor networks. The underlying architecture is modelled by a graph. We study various types of identifying codes that are robust against six natural changes in the graph; known or unknown edge deletions, additions or both. Our focus is on the radius r = 1. We show that in the infinite square grid the optimal density of a 1-identifying code that is robust against one unknown edge deletion is 1/2 and the optimal density of a 1-identifying code that is robust against one unknown edge addition equals 3/4 in the infinite hexagonal mesh. Moreover, although it is shown that all six problems are in general different, we prove that in the binary hypercube there are cases where five of the six problems coincide.  相似文献   

8.
Multi-temporal C-band SAR data (C-HH and C-VV), collected by ERS-2 and ENVISAT satellite systems, are compared with field observations of hydrology (i.e., inundation and soil moisture) and National Wetland Inventory maps (U.S. Fish and Wildlife Service) of a large forested wetland complex adjacent to the Patuxent and Middle Patuxent Rivers, tributaries of the Chesapeake Bay. Multi-temporal C-band SAR data were shown to be capable of mapping forested wetlands and monitoring hydroperiod (i.e., temporal fluctuations in inundation and soil moisture) at the study site, and the discrimination of wetland from upland was improved with 10 m digital elevation data. Principal component analysis was used to summarize the multi-temporal SAR data sets and to isolate the dominant temporal trend in inundation and soil moisture (i.e., relative hydroperiod). Significant positive, linear correlations were found between the first principal component and percent area flooded and soil moisture. The correlation (r2) between the first principal component (PC1) of multi-temporal C-HH SAR data and average soil moisture was 0.88 (p = < .0001) during the leaf-off season and 0.87 (p = < .0001) during the leaf-on season, while the correlation between PC1 and average percent area inundated was 0.82 (p = < .0001) and 0.47 (p = .0016) during the leaf-off and leaf-on seasons, respectively. When compared to field data, the SAR forested wetland maps identified areas that were flooded for 25% of the time with 63–96% agreement and areas flooded for 5% of the time with 44–89% agreement, depending on polarization and time of year. The results are encouraging and justify further studies to attempt to quantify the relative SAR-derived hydroperiod classes in terms of physical variables and also to test the application of SAR data to more diverse landscapes at a broader scale. The present evidence suggests that the SAR data will significantly improve routine wooded wetland mapping.  相似文献   

9.
We describe probabilistic primality tests applicable to integers whose prime factors are all congruent to 1 mod r where r is a positive integer;r =  2 is the Miller–Rabin test. We show that if ν rounds of our test do not find n   =  (r +  1)2composite, then n is prime with probability of error less than (2 r)  ν. Applications are given, first to provide a probabilistic primality test applicable to all integers, and second, to give a test for values of cyclotomic polynomials.  相似文献   

10.
Thermal bimaterial structures made of Ni and Ni-diamond nanocomposite for sensor and actuator application are proposed, fabricated, and tested. Two deflection types of thermal bimaterial structures, including upward and downward bending types, can be easily fabricated by controlling electroplating sequence of Ni and Ni-diamond nanocomposite. According to thermal performance measurement, the tip deflection of upward and downward types can reach about 82.5 μm and ?22.5 μm for a temperature change of 200 °C, respectively. In the condition, the thermomechanical sensitivity and output force are 412.5 nm/K and 97.0 μN for upward type thermal bimaterial structure; and ?112.5 nm/K and ?26.5 μN for downward type one. Due to the low electroplating process temperature (~50 °C) for both Ni-based layers, diminutive pre-deformation of as-fabricated structure and strong interlaminar bonding strength are verified by SEM and vibrational test. The resonant frequency of the structure remains unchanged after 109 cycles.  相似文献   

11.
This paper presents a new bi-side gate driver integrated by indium-zinc-oxide thin film transistors (IZO TFTs). Our optimized operate method can achieve high speed performance by employing a lower duty ratio (25%) CK2 with its pulse located in the middle of the pulse of CK2L to fully use the bootstrapped high voltage of node Q. In addition, the size of devices is optimized by calculation and simulation, and the function of the proposed gate driver is predicted by the circuit simulation. Furthermore, the proposed gate driver with 20 stages is fabricated by the IZO TFTs process. It is shown that a 2.6 μs width pulse with good noise-suppressed characteristic can be successfully output at the condition of Rload = 6 kΩ and Cload = 150 pF. The power consumption of the proposed gate driver with 20 stages is measured as 1 mW. Hence, the proposed gate driver may be applied to the display of 4K resolution (4096 × 2160) at a frame rate of 120 Hz. Moreover, there is a good stability for the proposed gate driver under 48 h operation.  相似文献   

12.
Accurate assessment of phytoplankton chlorophyll-a (chla) concentrations in turbid waters by means of remote sensing is challenging due to the optical complexity of case 2 waters. We have applied a recently developed model of the form [Rrs? 1(λ1) ? Rrs? 1(λ2)] × Rrs(λ3) where Rrs(λi) is the remote-sensing reflectance at the wavelength λi, for the estimation of chla concentrations in turbid waters. The objectives of this paper are (a) to validate the three-band model as well as its special case, the two-band model Rrs? 1(λ1) × Rrs(λ3), using datasets collected over a considerable range of optical properties, trophic status, and geographical locations in turbid lakes, reservoirs, estuaries, and coastal waters, and (b) to evaluate the extent to which the three-band model could be applied to the Medium Resolution Imaging Spectrometer (MERIS) and two-band model could be applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate chla in turbid waters.The three-band model was calibrated and validated using three MERIS spectral bands (660–670 nm, 703.75–713.75 nm, and 750?757.5 nm), and the 2-band model was tested using two MODIS spectral bands (λ1 = 662–672, λ3 = 743–753 nm). We assessed the accuracy of chla prediction in four independent datasets without re-parameterization (adjustment of the coefficients) after initial calibration elsewhere. Although the validation data set contained widely variable chla (1.2 to 236 mg m? 3), Secchi disk depth (0.18 to 4.1 m), and turbidity (1.3 to 78 NTU), chla predicted by the three-band algorithm was strongly correlated with observed chla (r2 > 0.96), with a precision of 32% and average bias across data sets of ? 4.9% to 11%. Chla predicted by the two-band algorithm was also closely correlated with observed chla (r2 > 0.92); however, the precision declined to 57%, and average bias across the data sets was 18% to 50.3%. These findings imply that, provided that an atmospheric correction scheme for the red and NIR bands is available, the extensive database of MERIS and MODIS imagery could be used for quantitative monitoring of chla in turbid waters.  相似文献   

13.
A novel 3 × 3 micromirror array is designed and successfully fabricated with multi-layer silicon surface micromaching technology. It is composed of bottom electrode, support part and mirror plate, in which a T type beam structure is used to support the mirror plate. It can provide mirror with the vertical movement and the rotation about two horizontal axes, thus enabling phase modulation and amplitude modulation for the incident light. The test results show that the maximum deflection length along the vertical direction of the mirror plate is 2 μm, while the rotation angle about X- and Y-axis are ±2.3° and ±1.45°, respectively.  相似文献   

14.
The development of a thermal switch based on arrays of liquid–metal micro-droplets is presented. Prototype thermal switches are assembled from a silicon substrate on which is deposited an array of 1600 30-μm liquid–metal micro-droplets. The liquid–metal micro-droplet array makes and breaks contact with a second bare silicon substrate. A gap between the two silicon substrates is filled with either air at 760 Torr, air at of 0.5 Torr or xenon at 760 Torr. Heat transfer and thermal resistance across the thermal switches are measured for “on” (make contact) and “off” (break contact) conditions using guard-heated calorimetry. The figure of merit for a thermal switch, the ratio of “off” state thermal resistance over “on” state thermal resistance, Roff/Ron, is 129 ± 43 for a xenon-filled thermal switch that opens 100 μm and 60 ± 17 for an 0.5 Torr air-filled thermal switch that opens 25 μm. These thermal resistance ratios are shown to be markedly higher than values of Roff/Ron for a thermal switch based on contact between polished silicon surfaces. Transient temperature measurements for the liquid–metal micro-droplet switches indicate thermal switching times of less than 100 ms. Switch lifetimes are found to exceed one-million cycles.  相似文献   

15.
Since some assumptions such as the function ϕ(·) needs to be completely specified and the relationship between μ and ϕ(s) must have linear behavior in the model μ = a + (S) used in the accelerated life testing analysis, generally do not hold; the estimation of stress level contains uncertainty. In this paper, we propose to use a non-linear fuzzy regression model for performing the extrapolation process and adapting the fuzzy probability theory to the classical reliability including uncertainty and process experience for obtaining fuzzy reliability of a component. Results show, that the proposed model has the ability to estimate reliability when the mentioned assumptions are violated and uncertainty is implicit; so that the classical models are unreliable.  相似文献   

16.
This paper reports a front-illuminated planar InGaAs PIN photodiode with very low dark current, very low capacitance and very high responsivity on S-doped InP substrate. The presented device which has a thick absorption layer of 2.92 μm and a photosensitive area 73 μm in diameter exhibited the high performance of a very low capacitance of 0.47 pF, a very low dark current of 0.041 nA, a very high responsivity of 0.99 A/W (79% quantum efficiency) at λ = 1.55 μm, the 3 dB bandwidths of 6.89 GHz (−5 V), 7.48 GHz (−12 V) for bare chips and 4.48 GHz (−5 V), 5.02 GHz (−12 V) for the devices packaged in TO can, respectively. Furthermore, the developed PIN photodiodes possess high breakdown voltage of less than −25 V.  相似文献   

17.
In rainfed vineyards water deficits play a major role in determining berry yield and composition. Therefore, reliable indicators of vine water status might be of great value for the optimization of grape yield and quality. In the present study the feasibility of using hyperspectral reflectance indices related to plant biophysical properties at predicting berry yield and quality attributes in rainfed vineyards is assessed. The study was conducted on Vitis vinifera cv. Chardonnay in commercial vineyards in the D.O. Penedès region (Catalonia, Spain) over two consecutive years (2007–2008). Field measurements of fractional intercepted Photosynthetic Active Radiation (fIPAR), canopy reflectance, predawn water potential (Ψp) and the canopy to air temperature difference at midday (ΔTmidday) were conducted at the stage of veraison. Yield, Total Soluble Solids (TSS), Titratable Acidity (TA) and the ratio TSS/TA (maturation index, IMAD) were determined at harvest. Contrasted water availability among vineyards prompted considerable variation in berry yield and quality attributes. Across years, higher yield was accompanied by higher TA (r = 0.59, p < 0.01) and lower IMAD (r = ? 0.63, p < 0.01) while no significant relationship was observed between yield and TSS. Yield was related to canopy vigor (fIPAR) in a variable extend: in 2007, yield was positively related to fIPAR (r = 0.71, p < 0.05) while yield was found to decrease along with increasing fIPAR in 2008 (r = ? 0.62, p < 0.05). Contrastingly, NDVI provided consistent estimates of yield across years (r = 0.57, p < 0.05). These results suggest that NDVI might be more appropriate to characterize the effects of varying water availability on yield than fIPAR. In addition, yield was found to be related to ΔTmidday (r = ? 0.63 and r = ? 0.66, in 2007 and 2008, respectively). Accordingly, the Water Index (WI), an indicator of vine water status, provided robust estimates of yield across years (r = 0.61, p < 0.01). The strength of the correlation between NDVI and WI vs. yield suggests that yield was influenced by changes in both leaf area (intercepted light) and photosynthesis (stomatal aperture) in a variable extent according to the timing and severity of water deficits in the years of study. Berry quality attributes did not show significant relationships against fIPAR but were related to ΔTmidday. Accordingly, NDVI did not show significant correlation with berry quality attributes, while WI was found to be consistently related to TA (r = 0.70, p < 0.01) and IMAD (r = ? 0.71, p < 0.01) across years. The results obtained suggest that the WI might provide reliable estimates of berry quality attributes in vineyards experiencing moderate to severe water deficits with potential application in precision viticulture activities such as selective harvesting according to grape quality attributes as well as for ripening assessment.  相似文献   

18.
19.
A polynomial P(X)  = Xd + ad  1Xd  1 + ⋯ is called lacunary when ad  1 =  0. We give bounds for the roots of such polynomials with complex coefficients. These bounds are much smaller than for general polynomials.  相似文献   

20.
We describe a deterministic finite element (FE) solution algorithm for a stochastic elliptic boundary value problem (sbvp), whose coefficients are assumed to be random fields with finite second moments and known, piecewise smooth two-point spatial correlation function. Separation of random and deterministic variables (parametrization of the uncertainty) is achieved via a Karhunen–Loève (KL) expansion. An O(N log N) algorithm for the computation of the KL eigenvalues is presented, based on a kernel independent fast multipole method (FMM). Truncation of the KL expansion gives an (M, 1) Wiener polynomial chaos (PC) expansion of the stochastic coefficient and is shown to lead to a high dimensional, deterministic boundary value problem (dbvp). Analyticity of its solution in the stochastic variables with sharp bounds for the domain of analyticity are used to prescribe variable stochastic polynomial degree r = (r1, …, rM) in an (M, r) Wiener PC expansion for the approximate solution. Pointwise error bounds for the FEM approximations of KL eigenpairs, the truncation of the KL expansion and the FE solution to the dbvp are given. Numerical examples show that M depends on the spatial correlation length of the random diffusion coefficient. The variable polynomial degree r in PC-stochastic Galerkin FEM allows to handle KL expansions with M up to 30 and r1 up to 10 in moderate time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号