首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raw bagasse ash collected from the Thai sugar industry has a high loss on ignition (LOI) of ~20%. When ground and ignited at 550 °C for 45 min, the LOI was reduced to ~5%. These high and low LOI of ground bagasse ashes were blended in the ratios of 1:2 and 2:1 by weight to give ground bagasse ashes with LOIs of 10% and 15%, respectively. Each of these ground bagasse ashes was used to replace Portland cement type I at 10%, 20%, 30%, and 40% by weight of binder to cast mortar.The results showed that the development of compressive strengths of mortars containing ground bagasse ash with high LOI was slower than that of mortar containing ground bagasse ash with low LOI. However, at the later age, both types of ground ash mortars displayed similar compressive strengths. Mortars containing high LOI (~20%) of ground bagasse ash at 20% and 30% by weight of binder could produce higher compressive strengths than a control mortar after 28 and 90 days, respectively. Mortar bars containing ground bagasse ash at 10% showed a greater potential sulfate resistance and displayed a reduce expansion compared to a control mortar. However, mortar bars containing high LOI (larger than 10%) of ground bagasse ashes showed greater deterioration from sulfate attack than the mortar bars containing low LOI (less than 10%) of ground bagasse ashes, especially at high replacement levels (30–40%).  相似文献   

2.
A class-F fly ash was used in making masonry mortars suitable for brick joints and for plastering. The mortars were made of a locally produced mixed cement and fly ash at 20% and 40% cement replacement with and without the addition of an air entraining agent/plasticiser. The testing programme includes the determination of water demand, relations between water-to-binder ratio and flow, setting time, air content, water retention, compressive strength and flexural strength.The obtained results suggest that fairly coarse grade class-F fly ash can be incorporated into mortars as replacement of the mixed cement for joint and plastering. The main concern is the low water retention which would be minimized by using a better grade/finer fly ash or by incorporation of plasticiser. Mixed cement containing 20–40% fly ash can be used to make Type N or Type S mortars. Furthermore, relations between flow values and water to binder ratio (W/B) of the mixed cement containing fly ash are developed as a practical aid for selection and formulation of mortar for brick construction and rendering/plastering.  相似文献   

3.
借助于水泥砂浆试样的抗压强度跟踪测试,考察了几种无机化学物质对粉煤灰水泥的活性激发效果,同时借助于对水泥硬化体样品的XRD测试和SEM观察,深入通探讨了添加激发剂的粉煤灰水泥硬化体的水化产物和微观结构特征。试验结果表明:激发剂显著促进了粉煤灰水泥的活性激发,尤其是早期活性,水泥强度显著提高;XRD测试和SEM观察也表明,与空白样品相比,掺加激发剂的粉煤灰水泥硬化体明显表现出致密化的结构特征,粉煤灰颗粒表面趋向于粗糙化;Ca(OH)2衍射峰和石英衍射峰明显减弱,表明在激发剂作用下粉煤灰中的活性成分与水泥水化放出的Ca(OH)2之间化学反应得到了加剧。  相似文献   

4.
This work deals with the frost resistance of blended cements containing calcined paper sludge (source for metakaolin) as partial Portland cement replacements. Freeze–thaw tests were performed on blended cement mortars containing 0%, 10% and 20% waste paper sludge calcined at 650 °C for 2 h. Cement mortar specimens were exposed to freezing and thawing cycles until the relative dynamic modulus of elasticity fell below 60%. The performance of the cement mortars was assessed from measurements of weight, ultrasonic pulse velocity, compressive strength, mercury intrusion porosimetry and SEM. Failure of the control cement mortar occurred before 40 freeze/thaw cycles, while cement mortar containing 20% calcined paper sludge failed after 100 cycles. After 28 and 62 freezing and thawing cycles, cement blended with 10% and 20% calcined paper sludge exhibited a smaller reduction in compressive strength than the control cement.  相似文献   

5.
In this study, influence of blended cements produced with different types of pozzolans on alkali-silica reaction (ASR) and sulfate resistance of concrete was investigated. For this reason, natural zeolite (clinoptilolite), fly ash (FA), and ground granulated blast furnace slag (GBFS) were used in different types of blended cement production. According to the mechanical performance of these blended cements, ASR and sulfate resistance experiments were carried out to obtain the durability performance of these cements. The length changes and microstructure investigations of the mortar specimens with different types of blended cements showed that zeolite, FA, and GBFS had reduced ASR and sulfate damages when compared with ordinary CEM I 42.5 reference specimen.  相似文献   

6.
This research demonstrates the effect of fly ash fineness on pore size and microstructure of hardened blended cement pastes. Two sizes of fly ash, original fly ash and classified fly ash were used to replace Portland cement type I paste. Test results indicated that the pore sizes of hardened blended cement paste were significantly affected by the rate of replacement and the fineness of fly ash. The replacement of cement by original fly ash decreased the pore sizes of blended cement paste and the incorporation of classified fly ash resulted in a further decrease in the pore sizes of blended cement paste. The X-ray diffraction (XRD) results showed that the blended cement paste with classified fly ash was more effective at reducing the intensity of Ca(OH)2 than that with the original fly ash. The scanning electron microscope (SEM) results revealed that the hardened blended cement paste containing finer fly ash produced a denser structure than the one containing coarser fly ash.  相似文献   

7.
The behaviour of Portland cement and Portland cement with 30% fly ash in 10% ammonium-sulphate solution was studied within a comprehensive research program. All materials have been chemically analysed and their physico-chemical and mechanical properties have been investigated. X-ray diffraction was used for following changes into microstructure after storage of samples in ammonium-sulphate solution, and phase composition changes were identified. Based on XRD analysis of the phase composition changes it could be concluded that the main product of the ammonium-sulphate attack on cements is gypsum, followed by ettringite. The presence of gypsum is increased with the time of exposing of samples in the solution for both types of cement, but it has occurred that the increase of this phase is higher in the PCBP samples containing fly ash. Compressive strengths of PCB and PCBP samples after curing in water for 14 days and exposed in ammonium-sulphate solution for 3, 7, 14, 21 and 28 days are investigated. PCBP samples containing fly ash have better behaviour in ammonium-sulphate solution. Addition of fly ash to Portland cement makes this cement become more resistant to the sulphate aggressive environment.  相似文献   

8.
粉煤灰、矿渣对水泥水化热的影响   总被引:7,自引:1,他引:6  
研究了不同水灰比硅酸盐水泥净浆的水化放热过程,以及用粉煤灰、矿渣粉配制成的混合水泥的水化放热过程,并研究了硅酸盐水泥和混合水泥的强度发展规律.试验结果表明:用粉煤灰、矿渣粉等量取代部分水泥,胶凝材料的水化热比硅酸盐水泥的水化热要低,但降低的幅度不完全与粉煤灰、矿渣粉的掺量成比例.单从降低胶凝材料水化热的角度看.掺粉煤灰的效果最好,掺矿渣粉的效果次之.强度试验结果表明,用粉煤灰和矿渣取代部分水泥的试件比同水灰比的水泥净浆试件的早期抗压强度小,但是后期强度增加快,从28 d强度看还是不及纯水泥净浆的强度.  相似文献   

9.
在UHPC材料中,通过在粉煤灰0%、20%、30%、40%的掺量下掺入不同碱激发剂(氢氧化钙、氢氧化钠、硫酸钠、硫酸钙、碳酸钠、水玻璃)测试砂浆浆体流动性、经时损失和胶砂试件抗压强度、抗折强度。结果表明:在UHPC材料中,随着粉煤灰掺量的增加,流动性改善明显,对抗压抗折强度影响较大;在粉煤灰掺量较小时,碱激发剂效果不明显,随着粉煤灰掺量的增加,碱激发剂的效果逐渐凸显出来;在粉煤灰掺量为30%、40%时,硫酸钙为最为突出的碱激发剂。  相似文献   

10.
A conventional solution in reducing the potential damage in concrete structures from external sulfate attack is to partially replace the Portland cement with appropriate fly ash. Presently, the compatibility of fly ash as a remedial cement substitution is based on empirically developed ASTM classifications. With proper testing techniques and multi-parameter approaches, one can better correlate the properties of blended cements with the expected level of damage. In this paper, parameters affecting the sulfate resistance of concrete are reviewed and the modifications to conventional expansion tests are discussed. The role of fly ash chemical composition on the level of damage was studied experimentally at macro and micro-scales. The linear expansions were determined both in paste and mortar systems using standard size and modified size specimens. Microstructural studies using ESEM and quantitative EDS were used to characterize the nature of reaction products and fronts. Statistical analysis of data indicated that the sulfate resistance of cementitious materials is significantly influenced by the chemical composition and the transport properties of the system which can be improved by appropriate fly ash substitution. It is also demonstrated that the study of these mechanisms can be expedited using modified size specimens.  相似文献   

11.
粉煤灰作新型建筑砂浆胶凝材料的试验研究   总被引:5,自引:0,他引:5  
以粉煤灰为主要原料,经机械磨细后,掺人少量水泥及复合激发剂(石灰、石膏、硫酸钠等),通过正交试验,配制出强度达到27.5级砌筑水泥要求的性能良好的新型粉煤灰砂浆粉,可作为中低强度等级建筑砂浆的胶凝材料,取代水泥与石灰.  相似文献   

12.
This paper reports on a comprehensive study on the properties of concrete containing fly ash and steel fibers. Properties studied include unit weight and workability of fresh concrete, and compressive strength, flexural tensile strength, splitting tensile strength, elasticity modulus, sorptivity coefficient, drying shrinkage and freeze–thaw resistance of hardened concrete. Fly ash content used was 0%, 15% and 30% in mass basis, and fiber volume fraction was 0%, 0.25%, 0.5%, 1.0% and 1.5% in volume basis. The laboratory results showed that steel fiber addition, either into Portland cement concrete or fly ash concrete, improve the tensile strength properties, drying shrinkage and freeze–thaw resistance. However, it reduced workability and increase sorptivity coefficient. Although fly ash replacement reduce strength properties, it improves workability, reduces drying shrinkage and increases freeze–thaw resistance of steel fiber reinforced concrete. The performed experiments show that the behaviour of fly ash concrete is similar to that of Portland cement concrete when fly ash is added.  相似文献   

13.
采用煤矸石电厂CFB粉煤灰超微粉等量替代水泥制备水泥胶砂试样,研究了所制备胶砂试样的抗压强度和抗冻性、耐弱酸腐蚀性能,并考察了不同减水剂对掺CFB粉煤灰超微粉水泥胶砂试样的适应性。试验结果表明,随着CFB粉煤灰超微粉掺量的增加,水泥胶砂试样的28 d抗压强度呈现先增长后减少的趋势,其中掺量为20%CFB粉煤灰超微粉水泥胶砂试样的28 d抗压强度最高,达到了48.5 MPa。与无CFB粉煤灰超微粉掺和的水泥胶砂试样相比,掺20%CFB粉煤灰超微粉水泥胶砂试样的25次冻融循环试验强度损失率减少约76%;48 h耐弱酸腐蚀试验质量损失率减少约36%。不同减水剂对水泥胶砂试样的适应性试验发现,萘系减水剂对掺CFB粉煤灰超微粉水泥胶砂的减水效果好于聚羧酸系减水剂,加入1.5%萘系减水剂后,其减水率可以达到22%左右。  相似文献   

14.
用普通硅酸盐水泥和硫铝酸盐水泥的混合水泥以及磨细高炉矿渣和聚合物乳液配制了4种水泥砂浆,研究了这些水泥砂浆试样在1%(质量分数,下同)硫酸加10%硫酸钠的混合溶液中浸泡不同时间后的质量变化和强度变化.结果发现,混合溶液对4种水泥砂浆都具有强烈的腐蚀作用.磨细高炉矿渣能显著提高砂浆的耐腐蚀性能;进一步添加聚合物乳液(聚胶比为10%),则砂浆的抗表面剥落性能有很大改善,其中尤以苯丙乳液与丁苯乳液的混合乳液改性砂浆效果更好,但添加聚合物乳液会导致砂浆的抗压强度大大降低.此外,水泥砂浆试样在混合溶液及清水中浸泡后,它们的抗压强度比值要比它们的抗折强度比值对硫酸/硫酸钠腐蚀介质更为敏感.  相似文献   

15.
This study investigates the abrasion–erosion resistance of high-strength concrete (HSC) mixtures in which cement was partially replaced by four kinds of replacements (15%, 20%, 25% and 30%) of class F fly ash. The mixtures containing ordinary Portland cement were designed to have 28 days compressive strength of approximately 40–80 MPa. Specimens were subjected to abrasion–erosion testing in accordance with ASTM C1138. Experimental results show that the abrasion–erosion resistances of fly ash concrete mixtures were improved by increasing compressive strength and decreasing the ratio of water-to-cementitious materials. The abrasion–erosion resistance of concrete with cement replacement up to 15% was comparable to that of control concrete without fly ash. Beyond 15% cement replacement, fly ash concrete showed lower resistance to abrasion–erosion compared to non-fly ash concrete. Equations were established based on effective compressive strengths and effective water-to-cementitious materials ratios, which were modified by cement replacement and developed to predict the 28- and 91-day abrasion–erosion resistance of concretes with compressive strengths ranging from approximately 30–100 MPa. The calculation results are compared favorably with the experimental results.  相似文献   

16.
This study is focusing on durability of the neat blended cement paste as well as those of the polymer-impregnated paste towards seawater and various concentrations of magnesium sulfate solutions up to 6 months of curing. The neat blended cement paste was prepared by a partial substitution of ordinary Portland cement with 5% of active rice husk ash (RHA). These samples were cured under tap water for 7 days. A similar paste was impregnated with unsaturated polyester resin (UPE) followed by gamma rays ranging from 10 to 50 kGy. The obtained data indicated that the polymer-impregnated specimens higher values of compressive strength than those of the neat blended cement paste. In addition, the polymer-impregnated blended cement specimens irradiated at a dose of 30 kGy and neat blended cement specimens were immersed in seawater and different concentrations of magnesium sulfate solutions namely, 1%, 3% and 5% up to 6 months. The results showed that the polymer-impregnated blended cement (OPC–RHA–UPE) paste irradiated at a dose of 30 kGy has a good resistance towards sulfate and seawater attack as compared to the neat blended cement (OPC–RHA) paste. These results were confirmed by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) studies.  相似文献   

17.
水泥基材料抗TSA侵蚀性能影响因素研究   总被引:1,自引:0,他引:1  
高小建  马保国 《工业建筑》2006,36(12):1-4,33
研究了不同配合比掺石灰石粉水泥砂浆在不同硫酸盐溶液中浸泡1年期间的外观、强度和矿物成分变化。结果表明,水灰比越低,砂浆抗TSA侵蚀性能越好;不同品种水泥的抗TSA侵蚀能力由高到低依次为:硫铝酸盐水泥>抗硫酸盐水泥>普硅水泥;掺硅灰和矿渣细粉均能明显改善混凝土抗TSA侵蚀性能,且矿渣粉掺量越大效果越明显。镁盐对碳硫硅酸钙晶体(thaumasite)的生成和TSA侵蚀破坏具有一定促进作用;水泥基材料TSA侵蚀破坏也可能发生于15℃以上环境中,环境温度对水泥基材料整体抗硫酸盐侵蚀性能的影响规律与材料组分有关。  相似文献   

18.
This paper presents a study of the properties and behavior of cement mortar with clinoptilolite which is one of the most common zeolite minerals found in nature. Six mortar mixtures were prepared by replacing the Portland cement with 0%, 5%, 10%, 15%, 20% and 30% clinoptilolite by weight. Test results showed that water demand, soundness and setting times of the cement pastes increased with the increase of clinoptilolite content. Compressive and flexural strength of the mortars containing clinoptilolite were higher than the control mixture. Dry unit weight of the mortars with clinoptilolite was lower than the control mortar. Clinoptilolite replacement decreased water absorption and porosity of the mortars. The control mortar showed less durability to carbonation compared to the mortars made with clinoptilolite at the end of carbonation tests. Freeze–thaw resistance of the mortars containing 5% clinoptilolite was higher than control mortar. The effect of clinoptilolite incorporation on high-temperature resistance seemed to be dependent on amount of clinoptilolite, temperature level, and the cooling method.  相似文献   

19.
The utilization of pulverised fuel ash (PFA) as a replacement material for Portland cement has resulted in improved concrete properties. However, the pozzolanic activity of PFA is slow, resulting in poor strength development of PFA concrete at early ages. To overcome this problem many researchers have investigated methods of activating (mechanically, thermally and chemically) the pozzolanic reactivity of PFA. This paper assesses the potential use of spent mushroom compost ash (SMCA) as a chemical activator for PFA blended cement systems.When added to the PFA/OPC paste mix SMCA had the effect of improving early strength development. X-ray diffraction results showed that, in the mix which contained 20% SMCA, ettringite formation was improved at both 7 and 28 days, whereas thermogravimetric analysis identified depletion of calcium hydroxide levels at both 3 and 7 days for the same sample pastes. It is therefore considered that the increased strength development in SMCA mixes is a result of the presence of large quantities of sulfates in SMCA, which, when hydrated, has activated the glassy phases present in PFA to form ettringite, as well as possibly accelerating the pozzolanic activity.  相似文献   

20.
This paper presents the flowing ability of the mortars formulated from various self-compacting concretes (SCCs) incorporating rice husk ash (RHA). The mortars were produced with different RHA contents and water–binder (W/B) ratios, as used in their parent SCCs. The flowing ability of the mortars was determined with respect to the flow spread at various dosages of a polycarboxylate based high-range water reducer (HRWR). The effects of RHA, W/B ratio, and HRWR on the flowing ability of mortars were observed. The mortar flowing ability decreased with the higher RHA content and W/B ratio, but increased with the greater HRWR dosage. However, the excessive HRWR dosages were not conducive to the mortar flowing ability due to the segregation problem in the form of bleeding. The overall mortar flowing ability results were useful to examine the suitability of RHA, and to fix the HRWR dosages for different SCCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号