首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of different treatment processes on the mutagenic activity (Ames test) and some chemical parameters in water were investigated in a few waterworks. Application of a chlorine treatment generally increased the direct and promutagenic activity, but the extent increase proved to be dependent on the type of water chlorinated. The use of ozone in the preparation of drinking water decreased the mutagenic activity in the water. The extent reduction was also dependent on the type of water ozonated. Dune filtration greatly reduced the mutagenic activity. Slow sand filtration could not be evaluated, because of the toxicity of the organic concentrates for the bacterial strains. Granular activated carbon filters, in operation for about 1 year, reduced the mutagenic activity below the detection level. A similar filter which has operated for more than 1.5 years in a pilot plant, showed a breakthrough of mutagenic activity, suggesting that carbon filters are able to remove organic mutagens for a limited period. The results of the chemical parameters measured before and after the different treatment processes showed that none of these parameters were a reliable indicator for the mutagenic activity.  相似文献   

2.
The aim of this study was to investigate endotoxin concentrations in cyanobacterial water blooms and strains, and to assess the removal of endotoxins during drinking water treatment. Endotoxin concentrations were measured from 151 hepatotoxic, neurotoxic and non-toxic cyanobacterial water blooms by using Limulus amebocyte lysate (LAL) assay, and the results were compared to bacterial data. Endotoxin activities ranged from 20 to 3.8 x 10(4) endotoxin units (EU) per ml. Endotoxicity of the samples correlated with phycobiliprotein concentration that was used to assess cyanobacterial abundance, heterotrophic plate count, and Aeromonas spp. but it did not correlate with the number of coliforms or streptococci. The high endotoxin concentrations occasionally detected in the water bloom samples were probably due to Gram negative bacteria that existed together with cyanobacteria since the 26 axenic cyanobacterial strains from different genera that were studied showed very low endotoxin activity. No differences in endotoxin activity were detected between hepatotoxic, neurotoxic and non-toxic strains. Removal of endotoxins during drinking water treatment was studied at nine waterworks that previously had been associated with high numbers of cyanobacteria and that used different processes for water purification. Endotoxin concentration in raw waters ranged from 18 to 356 EU ml(-1). The treatment processes reduced 59-97% of the endotoxin activity; in the treated water the concentration ranged from 3 to 15 EU ml(-1). The most significant reduction occurred at the early stages of water treatment, during coagulation, settling and sand filtration. Activated carbon filtration either increased or had no effect on endotoxin concentration. Ozonation and chlorination had little effect on the endotoxin concentrations.  相似文献   

3.
Treatment processes which are applied in The Netherlands during the preparation of drinking water have been evaluated with regard to introduction and removal of organic mutagens as well as halogenated organics. It appeared that the most efficient processes in reducing mutagenic activity were activated carbon filtration and artificial dune recharge. In general these processes were also the most efficient in removing halogenated organics. Using low doses of chlorine dioxide (< 1 mg C102/1) for safety disinfection of drinking water, no change or substantial less mutagenic activity than by chlorination (1 mg Cl/1) was found. This counts too for the formation of halogenated organics. Transport chlorination of stored river Meuse water was able to introduce or activate mutagenic nitro organics which have not been found previously. Ozone treatment under field conditions showed mostly a tendency to decrease the activity of organic mutagens. It was also shown that dependent on the water quality and treatment conditions a slight increase of mutagenic activity occurred, but this activity would be reduced by increasing the ozone dose. It seems possible to optimalize the ozone treatment conditions regarding the level of ozone dose and the contact time to avoid an increase of mutagenic activity. Futhermore it was shown that when a mutagenic raw water source was used a proper combination of treatment processes is able to produce drinking water in which no mutagenic activity could be detected under the test conditions. Finally it is stated that before far-reaching decissions with respect to use mutagenicity data for a selection of water sources or treatment processes will be made, more information on the relation mutagenic activity from drinking water and effects on human health should become available.  相似文献   

4.
A sampling program has been undertaken to investigate the variations of disinfection by-products (DBPs) formation and nature and fate of natural organic matter (NOM) through water treatment plants in Istanbul. Specific focus has been given to the effect seasonal changes on the formation of DBPs and organic precursors levels. Water samples were collected from the three reservoirs inlet and within three major water treatment plants of Istanbul, Turkey. Changes in the dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV(254)), specific ultraviolet absorbance (SUVA), trihalomethane formation potential (THMFP), and haloacetic acids formation potential (HAAFP) were measured for both the treated and raw water samples. The variations of THM and HAA concentrations within treatment processes were monitored and also successfully assessed. The reactivity of the organic matter changed throughout the year with the lowest reactivity (THMFP and HAAFP) in winter, increasing in spring and reaching a maximum in fall season. This corresponded to the water being easier to treat in fall and an increase in the proportion of hydrophobic content. Understanding the seasonal changes in organic matter character and their reactivity with treatment chemicals should lead to a better optimization of the treatment processes and a more consistent water quality.  相似文献   

5.
The objective of this study was to determine the genotoxic activity of water after UV/H2O2 oxidation and GAC filtration. Pre-treated surface water from three locations was treated with UV/H2O2 with medium pressure (MP) lamps and passed through granulated activated carbon (GAC). Samples taken before and after each treatment step were extracted and concentrated by solid phase extraction (SPE) and analyzed for genotoxicity using the Comet assay with HepG2 cells and the Ames II assay.The Comet assay showed no genotoxic response in any of the samples. In the Ames II, no genotoxic response was obtained with the TAMix (a mix of six strains), but the TA98 strain showed an increase in genotoxic activity after MP-UV/H2O2 for all three locations. GAC post treatment effectively reduced the activities to control levels at two of the three locations and to below the level of the pre-treated water at one site. The results indicate that UV/H2O2 treatment may lead to the formation of genotoxic by-products, which can be removed by subsequent GAC filtration.  相似文献   

6.
The characteristics of a system with bioactive powdered activated carbon and microfiltration have been studied under conditions of the aerobic treatment of natural water from the water storages of Guan Ting (China), the Moskva River, and the Yauza River (Russia). The removal of organic matter in the system was estimated in terms of the permanganate oxidizability and UV absorption at λ = 254 nm (UV254) and λ = 410 nm (UV410). The average removal efficiency amounted to 68.42, 75.61, and 87.50%, respectively, at water temperature 10°C. The water treatment process (at 20°C) began immediately after the start-up of the plant at the expense of the adsorption on activated carbon that guaranteed a high speed of removal of organic pollutants in the absence of mature microflora. By the time the adsorption capacity of carbon was exhausted, the microflora was able to mature ensuring in combination with the powdered activated carbon a high speed of removal. In order to guarantee the biological stability of water, the removal degree of assimilable organic carbon amounted to 60.2% and the purified water met the requirements of the recommended criterion (100 mg acetate-C/dm3).  相似文献   

7.
Hladik ML  Bouwer EJ  Roberts AL 《Water research》2008,42(20):4905-4914
Treated drinking water samples from 12 water utilities in the Midwestern United States were collected during Fall 2003 and Spring 2004 and were analyzed for selected neutral degradates of chloroacetamide herbicides, along with related compounds. Target analytes included 20 neutral chloroacetamide degradates, six ionic chloroacetamide degradates, four parent chloroacetamide herbicides, three triazine herbicides, and two neutral triazine degradates. In the fall samples, 17 of 20 neutral chloroacetamide degradates were detected in the finished drinking water, while 19 of 20 neutral chloroacetamide degradates were detected in the spring. Median concentrations for the neutral chloroacetamide degradates were ∼2-60 ng/L during both sampling periods. Concentrations measured in the fall samples of treated water were nearly the same as those measured in source waters, despite the variety of treatment trains employed. Significant removals (average of 40% for all compounds) were only found in the spring samples at those utilities that employed activated carbon.  相似文献   

8.
Estimates of cocaine consumption are currently resulting from population surveys, consumer interviews and crime statistics. A new approach (“sewage epidemiology”) based on the analysis of cocaine (COC) and its metabolite, benzoylecgonine (BE), in water samples was applied to 10 river sites and 30 wastewater treatment plants (WWTPs) in Belgium. Each river site was sampled twice, during the summer of 2007 and the winter of 2007-2008, while each WWTP was sampled on a Sunday and a Wednesday, during the summer-autumn of 2007 and the winter of 2007-2008. This sampling strategy allowed for the evaluation of spatial and seasonal variations in the occurrence of COC and BE in waste- and surface water. WWTP Brussel-Noord was sampled for 19 consecutive days to evaluate daily and weekly variations in the presence of COC and BE in wastewater. For 7 WWTPs, influent and effluent water samples were collected to investigate the removal of COC and BE during the wastewater treatment process. Analysis of water samples was performed using solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry. Measured concentrations were further converted into an amount of used cocaine, called cocaine equivalents, as previously described in the literature. Results showed no significant difference in cocaine use between the investigated seasons. A constant cocaine consumption was observed during the week (Monday-Friday) with peaks during the weekend for WWTP Brussel-Noord. The COC/BE ratio in water samples was significantly higher during winter, most probably due to a slower hydrolysis of cocaine in low-temperature water. COC and BE were removed in the investigated WWTPs with a removal efficiency of >93%.  相似文献   

9.
This paper investigates the characteristics of dissolved organic nitrogen (DON) in raw water from the Huangpu River and also in water undergoing treatment in the full-scale Yangshupu drinking water treatment plant (YDWTP) in Shanghai, China. The average DON concentration of the raw water was 0.34 mg/L, which comprised a relatively small portion (~ 5%) of the mass of total dissolved nitrogen (TDN). The molecular weight (MW) distribution of dissolved organic matter (DOM) was divided into five groups: > 30, 10-30, 3-10, 1-3 and < 1 kDa using a series of ultrafiltration membranes. Dissolved organic carbon (DOC), UV absorbance at wavelength of 254 nm (UV254) and DON of each MW fraction were analyzed. DON showed a similar fraction distribution as DOC and UV254. The < 1 kDa fraction dominated the composition of DON, DOC and UV254 as well as the major N-nitrosodimethylamine formation potential (NDMAFP) in the raw water. However, this DON fraction cannot be effectively removed in the treatment line at the YDWTP including pre-ozonation, clarification and sand filtration processes. The results from linear regression analysis showed that DON is moderately correlated to DOC, UV254 and trihalomethane formation potential (FP), and strongly correlated to haloacetic acids FP and NDMAFP. Therefore, DON could serve as a surrogate parameter to evaluate the reactivity of DOM and disinfection by-products FP.  相似文献   

10.
During 8 sampling campaigns carried out over a period of two years, 72 samples, including influent and effluent wastewater, and sludge samples from three conventional wastewater treatment plants (WWTPs), were analyzed to assess the occurrence and fate of 43 pharmaceutical compounds. The selected pharmaceuticals belong to different therapeutic classes, i.e. non-steroidal anti-inflammatory drugs, lipid modifying agents (fibrates and statins), psychiatric drugs (benzodiazepine derivative drugs and antiepileptics), histamine H2-receptor antagonists, antibacterials for systemic use, beta blocking agents, beta-agonists, diuretics, angiotensin converting enzyme (ACE) inhibitors and anti-diabetics. The obtained results showed the presence of 32 target compounds in wastewater influent and 29 in effluent, in concentrations ranging from low ng/L to a few μg/L (e.g. NSAIDs). The analysis of sludge samples showed that 21 pharmaceuticals accumulated in sewage sludge from all three WWTPs in concentrations up to 100 ng/g. This indicates that even good removal rates obtained in aqueous phase (i.e. comparison of influent and effluent wastewater concentrations) do not imply degradation to the same extent. For this reason, the overall removal was estimated as a sum of all the losses of a parent compound produces by different mechanisms of chemical and physical transformation, biodegradation and sorption to solid matter. The target compounds showed very different removal rates and no logical pattern in behaviour even if they belong to the same therapeutic groups. What is clear is that the elimination of most of the substances is incomplete and improvements of the wastewater treatment and subsequent treatments of the produced sludge are required to prevent the introduction of these micro-pollutants in the environment.  相似文献   

11.
It has been shown that in diluted aqueous solutions of alkylpyridinium chlorides (APC) containing polyacrylamide (PAA) one can detect synergism of their effect on surface tension. Maximum manifestation of synergism in the course of adsorption of components occurs at their molar ratio nAPC: nPAA—1: 0.25. By design values of the minimal area falling at the COD-PAA particles in surface layers a pattern of the structure of mixed layers at the boundary with air depending on the ratio of the components and the length of the COD hydrocarbon radical is proposed. It was found that the process of COD floatation removal is advisable to be carried out in weakly acid, neutral, and weakly alkaline media in the presence of PAA at the indicated molar ratio.  相似文献   

12.
The effects of granular activated carbon filtration and of the combination of ozonation and GAC filtration on the quality of Rhine water were studied in a pilot plant. The scope of the study was to compare both systems in relation to the removal of organic contaminants in water, and to the reduction of the side effects of chlorination. The water quality was measured with organic surrogate parameters (organohalogen, -nitrogen, -phosphorus and -sulphur) and in bacterial mutagenicity assays.In this particular setting, the combination of ozonation and GAC filtration was superior in all points to GAC filtration alone. The effects of ozonation are sometimes quite different, depending on the type of water treated. Its positive influence should be confirmed in a local situation.As GAC treatment causes a shift towards formation of more brominated THM after chlorination, special attention was given to this item. A higher inorganic bromide/DOC ratio resulted in higher brominated THM concentrations after chlorination. However, the mutagens formed during chlorination in presence of more inorganic bromide could be inactivated more easily by rat liver homogenate than in the normal setting. The results of this study confirmed earlier findings stating a negative influence of chlorination on water quality.  相似文献   

13.
Lee W  Westerhoff P 《Water research》2006,40(20):3767-3774
Coagulation of three surface waters was conducted with aluminum salt and/or cationic polymer to assess dissolved organic nitrogen (DON) removal. Coagulation with aluminum sulfate removed equal or slightly lower amounts of DON as compared to dissolved organic carbon (DOC). At aluminum sulfate dosages up to 5 mg per mg DOC, the cationic polymer improved DON removal by an additional 15% to 20% over aluminum sulfate alone. At very high aluminum sulfate dosages (>8 mg aluminum sulfate per mg DOC), however, the cationic polymer addition negligibly increased DON removal. Molecular weight fractionation before and after coagulation experiments indicated that cationic polymer addition can increase the removal of all molecular weight fractions of DON with the highest molecular weight fraction (>10,000 Da) being preferentially removed. Results indicated that the DON added as part of the cationic polymer was almost completely removed at optimum aluminum sulfate and polymer doses.  相似文献   

14.
We measured six acidic analgesics or anti-inflammatories (aspirin, ibuprofen, naproxen, ketoprofen, fenoprofen, mefenamic acid), two phenolic antiseptics (thymol, triclosan), four amide pharmaceuticals (propyphenazone, crotamiton, carbamazepine, diethyltoluamide), three phenolic endocrine disrupting chemicals (nonylphenol, octylphenol, bisphenol A), and three natural estrogens (17beta-estradiol, estrone, estriol) in 24-h composite samples of influents and secondary effluents collected seasonally from five municipal sewage treatment plants in Tokyo. Aspirin was most abundant in the influent, with an average concentration of 7300 ng/L (n = 16), followed by crotamiton (921 ng/L), ibuprofen (669 ng/L), triclosan (511 ng/L), and diethyltoluamide (503 ng/L). These concentrations were 1 order of magnitude lower than those reported in the USA and Europe. This can be ascribed to lower consumption of the pharmaceuticals in Japan. Aspirin, ibuprofen, and thymol were removed efficiently during primary + secondary treatment (> 90% efficiency). On the other hand, amide-type pharmaceuticals, ketoprofen, and naproxen showed poor removal (< 50% efficiency), which is probably due to their lower hydrophobicity (logKow < 3). Because of the persistence of crotamiton during secondary treatment, crotamiton was most abundant among the target pharmaceuticals in the effluent. This is the first paper to report ubiquitous occurrence of crotamiton, a scabicide, in sewage. Because crotamiton is used worldwide and it is persistent during secondary treatment, it is a promising molecular marker of sewage and secondary effluent.  相似文献   

15.
During the treatment of surface water to drinking water, ozonation is often used for disinfection and to remove organic trace substances, whereby oxidation by-products can be formed. Here we use the example of tolyltriazole to describe an approach for identifying relevant oxidation by-products in the laboratory and subsequently detecting them in an industrial-scale process. The identification process involves ozonation experiments with pure substances at laboratory level (concentration range mg L−1). The reaction solutions from different ozone contact times were analyzed by high performance liquid chromatography - quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) in full scan mode. Various approaches were used to detect the oxidation by-products: (i) target searches of postulated oxidation by-products, (ii) comparisons of chromatograms (e.g., UV/VIS) of the different samples, and (iii) color-coded abundance time courses (kinetic) of all detected compounds were illustrated in a kind of a heat map. MS/MS, H/D exchange, and derivatization experiments were used for structure elucidation for the detected by-product. Due to the low contaminant concentrations (ng L−1-range) of contaminants in the untreated water, the conversion of results from laboratory experiments to an industrial-scale required the use of HPLC-MS/MS with sample enrichment (e.g., solid phase extraction.) In cases where reference substances were not available or oxidation by-products without clear structures were detected, reaction solutions from laboratory experiments were used to optimize the analytical method to detect ng L−1 in the samples of the industrial processes. We exemplarily demonstrated the effectiveness of the methodology with the industrial chemicals 4- and 5-methyl-1H-benzotriazole (4- and 5-MBT) as an example. Moreover, not only did we identify several oxidation by-products in the laboratory experiments tentatively, but also detected three of the eleven reaction products in the outlet of the full-scale ozonation unit.  相似文献   

16.
Aluminium and fluoride in the water supply and their removal for haemodialysis have been investigated in the Trent Region, U.K., and wide variations noted. The efficiency of removal of these elements from the mains water supplying home haemodialysis units by different water treatment systems currently installed has been assessed and a follow-up study performed 8 months later. Some improvement in water treatment was noted, with the percentage of home dialysis units receiving waters within the proposed European Economic Community guidelines for aluminium rising from 61.7 to 72.1%. Removal of fluoride by the different treatment mechanisms is analogous to that for aluminium. A comparison of new and older water treatment systems has shown that there is a deterioration in performance with use. However, some cases of poor removal may be due to the installation of unsuitable equipment, or, more probably, due to a change in the waters used to supply the different homes. Thus, adequate maintenance of equipment and frequent sampling of both untreated and treated waters are required in order to maintain the provision of waters suitable for the preparation of dialysate.  相似文献   

17.
The removal of dissolved manganese in water treatment floc blanket clarifiers has been studied. The removal mechanisms may be broadly classified as adsorption and oxidation. Specifically adsorbed manganese is oxidised at the iron(III) oxide surface when solution pH approaches 8.5. The extent to which these removal processes contribute to manganese removal at plant scale will depend on the retention time of both liquid and solid components of flow within the clarifier, as well as clarifier pH.  相似文献   

18.
The addition of mineral talc, Aquatal®(Toulouse, France), to activated sludge treating paper mill effluents and its effect on settlement characteristics has been investigated. One laboratory study and a full‐scale investigation on a large waste water treatment plant (WWTP) with a capacity of 500.000 population equivalent (p.e.) have been carried out using this mineral. The sludge in the full‐scale plant was filamentous and had specific sludge volume index (SSVI) values in excess of 250. The talc dosing which was adapted to sludge settleability reduced SSVI values by 38%, improved the total suspended solids' concentrations by 86% and reduced the specific sludge load by 34%. In the laboratory‐scale plant, the sludge had SSVI values of 200–260 before treatment and was hydrophilic. The use of Aquatal® at a dose of 0.7 g/g mixed liquor suspended solids (MLSS) took 2 weeks to reduce the SSVI to 78. It also increased the hydrophobicity to a balanced 50%. The use of mineral converted the somewhat diffuse flocs into a compact structure.  相似文献   

19.
The combined influence of substituent type and UV/H2O2 process parameters on the degradation of four aromatic water pollutants was investigated using modified 33 full factorial design and response surface methodology. Degradation kinetics was described by the quadratic polynomial model. According to the applied ANOVA, besides pH and [H2O2], model terms related with the pollutant structure are found to be significant. Different optimal operating conditions and values of observed degradation rate constants were determined for each of the pollutants indicating that the type of substituent influences the overall process effectiveness over structurally defined degradation pathway. Biodegradability (BOD5/COD) and toxicity (TU) were evaluated prior to the treatment and at the reference time intervals t1/2(P), t3/4(P), t1/4(OC) and t1/2(OC) corresponding to the real time required to reduce the concentration of parent pollutant and organic content for 1/2, 3/4, 1/4 and 1/2 of initial amount. The observed differences are correlated to the structural differences of studied aromatics.  相似文献   

20.
The removal efficiency of several pharmaceutically active compounds from two different surface water types was investigated. Two different nanofiltration (NF) membranes (Trisep TS-80 and Desal HL) were first studied at low feed water recoveries (10%). In a second phase, the combination of an NF unit at higher feed water recovery (80%) with subsequent granular activated carbon (GAC) filtration of the permeate was investigated. Results indicate that removal of the selected pharmaceuticals with NF is mainly influenced by charge effects: negatively charged solutes are better removed, compared with uncharged solutes, which are, in turn, better removed compared with positively charged solutes. This latter trend is mainly due to charge attractions between the negatively charged membrane surface and positively charged solutes. Increasing feed concentrations of positively charged pharmaceuticals lead to increasing rejection values, due to membrane charge-shielding effects. The removal efficiency of pharmaceuticals with the combination NF/GAC is extremely high. This is mainly due to an increased adsorption capacity of the activated carbon since the largest part of the natural organic matter (NOM) is removed in the NF step. This NOM normally competes with pharmaceuticals for adsorption sites on the carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号