首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
针对气田回注污水水质复杂,导致设备发生腐蚀现象,在详细分析气田回注污水的水质特点的基础上,重点分析研究了亚铁离子含量及pH值对气田回注污水腐蚀的影响,试验结果表明:Fe~(2+)及pH对气田回注污水的腐蚀性有一定影响。随着Fe~(2+)的浓度升高,污水的腐蚀速率呈降低趋势,当Fe~(2+)浓度为0时腐蚀速率最高;污水pH值等于7时Fe~(2+)对污水腐蚀速率影响最大,pH值等于6次之,pH值等于8时最小。  相似文献   

2.
针对某油田采出水回注处理系统频繁腐蚀穿孔的问题,在水质分析和腐蚀速率监测的基础上,考察了20#钢和316L不锈钢的挂片腐蚀结果,测试了腐蚀最严重部位的采出水在不同溶解氧、温度、pH值、细菌数量和种类,不同振动频率条件下对20#钢和316L不锈钢的腐蚀影响。结果显示,该站内各节点的水质矿化度均较高,Cl-含量也较大,随着处理流程的推进,总铁含量逐渐增加,20#钢的腐蚀速率不断增大,而316L不锈钢的耐蚀性较好;在50℃、溶解氧浓度为6 mg/L时,20#钢的腐蚀速率达到最大0.389 9 mm/a;采出水腐蚀速率随pH值的升高而降低,随细菌数量的增加而升高,且SRB对腐蚀的影响大于IB;不同注水泵振动频率也会对腐蚀造成一定影响。通过热能利用、调整工艺流程、调节pH值、除氧、杀菌、更换管材等方式可以有效减轻水处理系统的腐蚀风险。  相似文献   

3.
以大庆油田采出污水为母液,通过改变其温度、矿化度、聚丙烯酰胺浓度、碳酸盐浓度、pH值、氯离子浓度等条件考察影响A3钢试片腐蚀率的因素。结果表明,随着温度的升高,腐蚀率先升高后降低,在约50℃时出现极大值;聚丙烯酰胺和强碱均具有缓蚀作用;碳酸钠浓度的增大或矿化度的降低亦有利于腐蚀率的下降;增大Cl^-或细菌浓度,腐蚀作用加剧。  相似文献   

4.
松辽盆地北部深层气井CO2腐蚀预测方法   总被引:1,自引:0,他引:1  
松辽盆地北部深层气井井深、温度高、压力高。天然气中含有CO2,地层水矿化度高,井液中含有一定量的Cl^-,井下管柱腐蚀为CO2和水引起的电化学腐蚀。随着温度的升高,腐蚀速率先增大后减小,80℃时腐蚀速率达到最大值;降低溶液pH值、增加溶液中的Cl^-浓度、提高CO2分压以及介质的流速,均加剧了油管腐蚀;通过灰色关联量化计算影响CO2腐蚀因素关联度,温度、CO2分压、Cl^-浓度、pH值和流速是影响CO2腐蚀的主要因素;根据DWM腐蚀预测模型的函数关系,利用现场腐蚀监测和实验数据计算相应的系数,建立了适合松辽盆地北部深层气井的CO2腐蚀速率预测模型。  相似文献   

5.
P110钢在有机盐完井液中的腐蚀行为   总被引:1,自引:0,他引:1  
模拟油田腐蚀环境考察了有机盐完井液密度、温度、CO2分压、pH值等对P110钢腐蚀行为的影响。结果表明:随完井液密度的增加,P110钢平均腐蚀速率逐渐降低,密度越高,腐蚀产物膜的晶粒越均匀、细小、晶粒间堆积越致密,利于阻止腐蚀介质的侵入;温度越高,腐蚀越严重,低温时试片表面光亮,高温时存在点蚀坑较多的局部腐蚀;随CO2分压增加,平均腐蚀速率先是升高然后降低,在2.0MPa时出现最大值;随pH值增加,P110钢腐蚀速率逐渐下降。认为P110钢在高温(120℃)或低密度(1.05g/cm^3)下存在严重的局部腐蚀,应考虑防腐。  相似文献   

6.
可自适应膨胀防砂筛管割缝表面腐蚀试验研究   总被引:1,自引:1,他引:0  
为了进一步了解可自适应膨胀筛管腐蚀的影响因素,提高该防砂筛管的应用性能,介绍了该防砂筛管割缝表面腐蚀试验的原理,对温度、氯离子、钙离子、pH值变化对割缝表面腐蚀的影响进行了试验和分析,为该防砂筛管的应用提供了依据。研究结果表明,在30~80℃之间时,随着温度的升高,表面腐蚀速率加快,在80℃时达到最高点后,开始回落;在含有氯离子的溶液中割缝表面易发生点蚀,随着氯离子质量浓度的增加,腐蚀速率呈下降趋势;钙离子对割缝的腐蚀有抑制作用;pH值在3~6之间时,随着pH值的增加,腐蚀速率下降。  相似文献   

7.
�����꾮����߸�ʴӰ�����ط���   总被引:9,自引:1,他引:8  
空气钻井因其钻速快,防漏制漏效果好,具有常规钻井液不可比拟的优越性,但由于含氧量高,当其遇到地层水时,钻具腐蚀情况较为严重。以伊朗TABANK气田14井为例,该井地层水为腐蚀介质,研究了温度、空气压力、含砂量、砂子粒度、转速和pH值对S135钻杆钢的腐蚀影响,为以后空气钻井防腐提供了参考依据。试验结果表明:腐蚀速率随温度、空气压力或转速的升高而增大,在低温或低压下,腐蚀为均匀腐蚀;高温或高压下,呈现非均匀腐蚀现象。随腐蚀介质中含砂量的增多,石英砂对S135钢的磨蚀作用增强,腐蚀速率逐渐增大,石英砂越细,则其磨蚀作用越强,腐蚀越明显;均匀混合的石英砂较单一级配的石英砂对钢片的腐蚀程度大。腐蚀速率随pH值的升高而降低,碱性条件有利于防腐。  相似文献   

8.
10#碳钢在NaHCO3-Na2SO4体系中的腐蚀规律研究   总被引:1,自引:1,他引:0  
研究了在NaHCO3-Na2SO4体系中,温度、pH值、侵蚀性离子(Cl-,S2-,HCO3,NO3-,CO32-)以及缓蚀性离子(MoO42-,NO2-,Cr2O72-,Zn2+)对10号碳钢年腐蚀速率的影响。研究结果表明,在60℃和80℃条件下,HCO3-离子均存在着一个临界浓度(约0.1mol/L),当HCO3-离子浓度等于0.1mol/L时,腐蚀速率很小,几乎为零;当HCO3-离子浓度低于或高于此浓度时腐蚀速率都有所增大,但当浓度达到0.2mol/L时腐蚀速率有下降趋势,说明高浓度的HCO3-离子对碳钢具有一定的保护性。侵蚀性离子对碳钢腐蚀作用由小到大的顺序为Cl-<NO3-<S2-<CO32-。 MoO42- ,NO2- ,Zn2+等缓蚀性离子,可以通过提高溶液的pH值,在碳钢表面生成保护膜等对碳钢起到保护作用;而Cr2O72-却能降低溶液的pH值,促进碳钢的腐蚀。  相似文献   

9.
酮苯脱蜡装置的腐蚀常发生于溶剂回收系统,针对溶剂回收系统的腐蚀介质进行了温度、pH值的相关试验,研究腐蚀规律。研究发现:循环溶剂中存在小分子有机酸,溶剂系统的腐蚀可能是由小分子有机酸导致;脱酮塔底排水的腐蚀速率随温度升高而增大,循环溶剂的腐蚀速率则随温度升高呈现先增大后减小的趋势,且腐蚀产物为铁的氧化物,易被冲刷带走;脱酮塔底排水的腐蚀速率随pH值的增大呈现出先减小后增大再减小的趋势。针对小分子有机酸的腐蚀,建议可将pH值控制在6~9,以控制溶剂系统的腐蚀程度。  相似文献   

10.
南海番禺气田海底管线内腐蚀评价与预测   总被引:2,自引:0,他引:2  
通过对海底管线天然气中腐蚀性气体含量、残留水的矿化度、盐含量和总铁离子含量分析发现:南海HZ21-1平台至珠海陆地终端的海底管线存在一定的内腐蚀倾向;利用美国OLI公司的Corrosion Analyzer腐蚀预测软件对海底管线的内腐蚀倾向进行了预测,预测结果表明:海底管线的腐蚀速率随温度的升高而增加,随输送压力的升高而增加,腐蚀速率受温度的影响较大,受压力的影响较小,腐蚀速率预测值均小于0.0764mm/a,属于轻微腐蚀。  相似文献   

11.
循环水系统铜质换热器出现腐蚀,将严重威胁生产装置的安全运行。针对中国石化北方某石化企业循环水系统现场监测铜片腐蚀速率超标现象,对循环水水质的腐蚀特性、氨氮、有机磷、微生物d的含量等因素进行了综合分析,结果表明,在这些因素中碱度低、氨氮浓度超标、氯离子浓度高是引起铜质试片腐蚀的主要原因,采取提高M碱度和提高铜缓蚀剂的使用浓度等应对措施,可以有效降低铜质设备的腐蚀速率,避免铜质换热器腐蚀给装置带来的安全风险。  相似文献   

12.
以南二注采出水为研究对象,采用静态挂片法系统研究采出水离子组成、pH等因素对腐蚀速率的影响,应用灰关联分析研究影响采出水腐蚀速率的主要因素以及各因素的影响程度。结果表明:水中溶解氧浓度增大、pH降低、水流动速度加快,腐蚀速率升高。静态条件下,腐蚀速率影响较大的因素是:Fe3+、溶解氧、pH、;HCO3-、S2-、∑Fe浓度等与腐蚀速率的关联度较大。采取相应措施后,腐蚀速率可控制在0.043mm/a以下。  相似文献   

13.
为提高溶菌酶在循环水系统中的缓蚀效果,研究了Zn2+、Mg2+、Ca2+等循环水系统中常见的离子对于溶菌酶缓蚀作用的影响。结果表明,循环水中Zn2+、Mg2+、Ca2+质量浓度范围分别为25~100 mg/L、61.97~86.97 mg/L、107.75~182.57 mg/L时,溶菌酶的活性和缓蚀性能均有所提高;其中,Zn2+质量浓度为50 mg/L时溶菌酶的缓蚀率最高,达99.37%。  相似文献   

14.
以长庆油田庄一联合站采出水为研究对象,对水源井采出水的离子、溶解氧及细菌含量分析、腐蚀速率测定,通过室内模拟水质离子含量进行腐蚀实验,利用差量法确定了引起腐蚀的主要因素.实验结果表明,采出水中HCO3-、SO42-和较低的pH值是造成腐蚀的主要原因.  相似文献   

15.
Bio-SR工艺中T.f菌生长环境影响因素正交试验研究   总被引:1,自引:1,他引:0  
通过正交试验考察了温度、pH值、初始Fe2+浓度及初始Fe3+浓度这4个因素以及这4个因子之间相互作用对氧化亚铁硫杆菌(即T.f菌)的生长速度的影响。建立了正交实验表L27(313),进行了27组实验,然后利用方差分析方法分析试验数据,判定温度和pH值相互作用对T.f菌生长情况影响显著。研究结果表明其最优适宜环境为:pH=2、温度28℃、初始Fe2+浓度0.15mol/L、初始Fe3+浓度为0.06mol/L。  相似文献   

16.
油田注水管道腐蚀磨损交互作用的试验研究   总被引:2,自引:0,他引:2  
国内一些进入中后期开发的油田,开始逐步采用注水方式提高原油采收率,金属管道的腐蚀磨损严重影响了油田的生产。在考虑温度、含砂量、介质pH值及流速等因素的情况下,采用自制的旋转试样腐蚀磨损电化学试验装置,利用析因试验设计,模拟油田注水管道的工作状况,进行了碳钢Q235在含砂介质中的腐蚀磨损试验。试验结果表明,腐蚀磨损的交互作用强度很大,发现影响交互作用量的主要影响因素依次是溶液的pH值、转速和溶液的温度,金属腐蚀严重的情况下,如果温度升高、溶液中含砂量及流速加大,就会加快金属管道的腐蚀磨损,降低金属管道的使用寿命。通过试验得出了设计点处交互作用量的估计方程和数学表达式,并指出控制注水管道腐蚀磨损的主要手段是降低介质腐蚀性。  相似文献   

17.
对某石化分公司10 Mt/a蒸馏装置塔顶冷凝冷却系统腐蚀的原因进行了分析:原油/常压塔顶油气换热器E-102部分管板焊缝及热影响区蚀坑是结垢引起的垢下腐蚀以及HCl露点腐蚀共同作用的结果。结垢及微裂纹的主要原因为常压塔顶系统注剂匹配欠佳、注水量偏低、注水水质不佳及氯化物应力腐蚀开裂,管板在焊接(堆焊)、机加工过程中存在一定的残余应力使管板在拉伸应力和含氯化物水溶液的共同作用下发生氯化物应力腐蚀开裂造成的。原油/初馏塔顶油气换热器E-101管板结垢严重,但腐蚀轻微,其原因为初馏塔顶系统温度较常压塔顶高、冷凝水pH值控制较好且氯离子含量较常压塔顶低。针对以上问题采取了相应对策并对塔顶防腐蚀系统进行了改造,确保塔顶冷凝水pH值控制在6~9,Fe2+和Fe3+质量浓度不大于2 mg/L,取得了良好的效果。  相似文献   

18.
针对宁夏煤业有限责任公司400万t/a煤制油尾气脱碳装置,分析了脱碳塔压差高、系统接气受阻、系统中Fe3+质量浓度超标、V2O5消耗高等问题,并提出工艺优化对策.结果表明:更换或清洗堵塞严重的规整填料,可防止塔压差升高;增加溶液过滤量可除去系统中的机械杂质、烃类物质、Fe3+等,可防止塔压差升高,但会增加V2O5消耗量...  相似文献   

19.
氧化-混凝法用于油田回注污水处理研究   总被引:5,自引:1,他引:4  
报道了过氧化辅助混凝法处理油田回注污水的研究结果。简述了方法原理。在室内实验研究中将油田污水先用石灰乳处理,使pH值升至7.07~7.3,先后加入合20%H2O2的氧化剂和混凝剂聚硅酸铝铁,沉降后的上清液经砂滤器过滤即得到净化污水。加入氧化剂5mg/L和混凝剂60mg/L,使污水中含油、悬浮固体、总铁、舍硫(S^2-)分别由146、43、26、8.0mg/L降至2.8、2.1、0.1、0mg/L;与单独使用混凝剂相比,混凝剂的最优加量范围由80~100mg/L扩大至40~90mg/L,适应处理水量变化的能力大大增强;氧化剂最优加量范围为4~6mg/L.在中原油田采油三厂进行的现场试验中,过氧化辅助混凝法(5mg/L氧化剂 60mg/L混凝剂)处理后的污水,舍油、悬浮固体、总铁、舍硫、MF、TGB、SRB、腐蚀速率等指标均大大优于混凝法(90mg/L混凝剂)处理后的污水,特别是MFF值高达42,TGB和SRB茵数为0,腐蚀速率为0.0386mm/a;在水处理流程中,被处理水的腐蚀速率除混合罐内高于来水外,均低于0.076mm/a;处理后污水合氧量低,水质的稳定性提高。图5表4参5。  相似文献   

20.
赵国仙  高明忍 《焊管》2020,43(10):8-16
为研究140V碳钢和2830镍铬合金钢之间的电偶腐蚀行为,通过模拟150 ℃、H2S分压1.5 MPa、CO2分压4.5 MPa、Cl-浓度90 000 mg/L的地层水井下环境,采用浸泡腐蚀模拟试验,并利用 XRD 结合 SEM、EDS 观察分析腐蚀产物膜特征,研究了2830镍铬合金钢与140V碳钢在模拟地层水环境中偶接前后的电偶腐蚀行为。结果表明:在模拟地层水腐蚀环境下,2830镍铬合金钢与140V碳钢偶接后,发生了明显的电偶腐蚀,其中碳钢140V作为偶对体系的阳极,平均腐蚀速率明显增长,而镍铬合金钢2830作为阴极,平均腐蚀速率有所减缓。XRD检测结果表明,2830钢试样表面生成主要是内部基体的Fe-Ni固溶体、Cr-Ni固溶体、Fe及Ni的腐蚀产物膜,140V钢试样表面则主要是FeS、FeS2、FeCO3及Fe3O4的腐蚀产物膜。电偶腐蚀评价研究表明镍铬合金钢+碳钢组合电偶腐蚀较严重,在油套管应用中应避免直接接触使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号