首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以正十二烷/30%辛醇溶液为稀释剂,研究了2,6-双(5,6-二异丙基-1,2,4-三唑-3)吡啶(iPr-BTP)在硝酸介质中对镅和15种稀土元素的萃取行为,测定了各元素的萃取分配比,实验考察了水相酸度、iPr-BTP浓度、稀释剂组成、萃取时间、离子强度对萃取Am(Ⅲ)和Eu(Ⅲ)分配比的影响。iPr-BTP对镅萃取5rnin可达到平衡,而对铕的萃取动力学则较为缓慢,15min后方达到萃取平衡。硝酸浓度在0.2~1.0mol/L范围内时,Am/Eu的分配比基本不变。  相似文献   

2.
研究了N,N,N′,N′-四异丁基-3-氧杂戊二酰胺(TiBOGA)-40%正辛醇/煤油对超铀元素及Tc的萃取,研究结果表明,0.2mol/L,TiBOGA-40%正辛醇/煤油对Tc(Ⅶ),Am(Ⅲ),Np(Ⅳ),Np(Ⅴ),Pu(Ⅲ),Pu(Ⅳ)均有一定萃取能力,在酸度为1mol/L HNO3的模拟料液中,其分配比分别为:2.25,>2000,43,0.734,>2000,34。TiBOGA-40%正辛醇/煤油对各种离子的萃取能力受酸度和盐析剂浓度影响较大,用0.1mol/L HNO3能将除Am(Ⅲ)以外的其它几种离子从有机相中反萃下来。0.6mol/L H2C2O4对超铀元素的反萃效果都很好,经过1次或2次反萃,反萃率均可达99%以上。  相似文献   

3.
研究了二氯苯基二硫代膦酸 (DCPDTPI)对示踪量Am3+ 和Eu3+ 的萃取。实验结果表明 ,此萃取剂优先萃取Am3+ ,当萃取剂浓度为 0 1mol/L ,pH =2 73时 ,最大的分离因数β(Am3+ /Eu3+ ) max=8。用ICP MS法同时测定了DCPDTPI对除钷以外的所有镧系元素的萃取分配比 ,并计算了Am3+ 与这些元素的分离因数  相似文献   

4.
在硝酸介质中,研究了6,6′-二(5,6-二乙基-1,2,4-三嗪-3-基)-2,2′-联吡啶(6,6′-bis(5,6-diethyl-1,2,4-triazin-3-yl)-2,2′-bipyridine,C2-BTBP)/CHCl3体系对镅和镧系元素的萃取行为。重点考察了萃取时间、萃取剂浓度、水相硝酸浓度等因素对C2-BTBP萃取Am的影响。结果表明:C2-BTBP萃取镅时,10min达到平衡;D(Am)随酸度增大先增大后减小。在考察的酸度范围内,镧系元素的分配比均较小。提出了C2-BTBP/CHCl3体系分离三价锕系与镧系元素的概念流程,并经串级实验验证。萃取剂(C2-BTBP/CHCl3)浓度为0.04mol/L,料液酸度为1.0mol/L HNO3,洗涤液酸度为1.0mol/L HNO3,流比为AF∶AX∶AS=1∶1∶0.5,经6级萃取、4级洗涤后,镅的萃取率为99.93%,Am中Ln的去污因子大于103,Am中镧系元素的含量小于0.03%,可较好的实现镅和镧系元素的分离。  相似文献   

5.
UTEVA萃取色层分离超铀元素的性能研究   总被引:1,自引:0,他引:1  
为建立快速、可靠的环境样品中超铀元素的分析方法,对UTEVA萃取色层树脂分离超铀元素的性能进行了研究。通过改变氧化还原条件、淋洗剂种类和浓度来探索UTEVA萃取色层树脂分离Am、Pu、Np和U的实验条件及分离效果,确定了以3 mol/L HNO3、1 mol/L HNO3-0.1 mol/L抗坏血酸、2 mol/L HCl-0.1 mol/L草酸、0.01 mol/L HNO3分别作为UTEVA树脂上Am、Pu、Np和U的淋洗剂,获得Am、Pu、Np和U的回收率分别为(93±1)%(、68±2)%(、44±3)%和(70±5)%(n=6),各核素间的去污因子为1×102~5×105。结果表明,用单个UTEVA萃取色层柱能够将Am、Pu、Np和U分离,并将此方法成功用于环境样品中Am、Pu、Np和U的分离。  相似文献   

6.
冠醚萃取模拟高放废液中Sr^2+,Cs^+的研究   总被引:2,自引:0,他引:2  
用同位素踪法研究冠醚对模拟高放废液中Sr^2+,Cs^+的提取,0.01mol/l二环己基-18-冠-6在CHCl2CHCl2和CHCl3中对Sr^2+的一次萃取率在90%以上,二苯并-21-冠-7-磷钼酸-硝基苯体系对Cs^+的萃取效果较好。  相似文献   

7.
φ70mm核用离心萃取器Ⅱ.传质性能   总被引:2,自引:0,他引:2  
研究了φ70mm核用离心萃取器的传质.性能以30%TRPO-煤油-HNO3为体系,在转速3000r/min、总流量40-100L/h、流比1/3.0-3.0/1的操作条件下,硝酸的传质级效率达85%以上。以含Nd^3 的30%TRPO-煤油-HNO3为体系,在转速1500r/min、流比1.3/4.1/1、总流量29.4-46.3L/h的操作条件下,Nd^3 的平均反萃级效率达87%以上。  相似文献   

8.
TODGA/正十二烷萃取Am(Ⅲ)的动力学   总被引:1,自引:0,他引:1  
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂,正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Am(Ⅲ)的动力学,考察了搅拌转速、两相界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对Am(Ⅲ)萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130 r/min以下时,0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的过程为扩散控制类型,在搅拌转速为150 r/min以上时,则属于化学反应控制的动力学控制模式;(2) 求得了在(170±2) r/min、温度为(25±0.1) ℃时0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率方程:
r0=(dcorg(M)/dt)t=0=k•(S/V)c0.94aq,0(Am)c1.05aq,0(HNO3)c1.19org,0(TODGA)
在25℃下,求得表观速率常数k=(24.2±3.4)×10-3mol-2.18•L2.18•min-1•cm;(3) 0.1mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率随着温度的升高而增大,求得表观活化能Ea=(25.94±0.98)kJ/mol。  相似文献   

9.
研究了二氯苯基二硫代膦酸(DCPDTPI)对示踪量Am^3 和Eu^3 的萃取,实验结果表明,此萃取剂优先萃取Am^3 ,当萃取剂浓度为0.1mol/L,pH=2.73时,最大的分离因数β(Am^3 /Eu^3 )max=8。用ICP-MS法同时测定了DCPDTPI对除钷以外的所有镧系元素的萃取分配比,并计算了Am^3 与这些元素的分离因数。  相似文献   

10.
用单级φ70核用离萃取器在硝酸溶液中进行了30%TRPO/煤油体系萃取 Nd^3 的传质性能实验。结果表明:在流比为2:1和1:1,转速为1760-2650r/min,总流量为40-200L/h的条件下,Nd^3 的传质级效率达90%以上。在模拟料液和30%TRPO/煤油体系中的传质性能实验结果表明:在流比为2:1,转速为1760-2650r/min,总流量为30-150L/h的条件下,传质级效率达90%以上。用5.5mol/L HNO3反萃有机相中Nd^3 的实验结果表明:反萃级效率随总量增加而减小,在同一总流量下随转速的增加而增大,在实验条件范围内,Nd^3 的反萃级效率在83%-93%之间。实验结果证明:φ70核用离萃取器具有良好的水力学性能和传质性能。  相似文献   

11.
比较研究了混合三烷基氧膦(TRPO)-磷酸三丁酯(TBP)/煤油混合体系和TRPO/煤油体系对铀和硝酸的萃取含量,结果表明,混合体系的萃取容量比TRPO/煤油体系高。测定了20%TRPO-20%TBP/煤油混合体系对二十余种离子的萃取分配比,结果表明在较宽的NHO3浓度范围(0.5-5mol/L)内,该混合体系对低浓度UO2^2 、低浓度U^4 ,Pu^4 ,Pu^3 ,NpO2^2 ,Np^4 都有较高的萃取能力;低酸条件(<1.0mol/L)下,混合体系对TcO4^-1,Am^3 ,Eu^3 ,Y^3 有较高的分配比;混合体系对NpO2^ ,Sr^2 ,Cs^ 等的萃取能力较弱。TRPO-TBP/煤油有机相中萃取的镅、铀、钚和锝可以分别用高浓度硝酸、碳权铵溶液、羟基乙酸和高浓度硝酸(或碳酸盐)反萃下来。  相似文献   

12.
磷酸三异戊酯对Pu(Ⅳ)的萃取性能   总被引:1,自引:0,他引:1  
本工作研究磷酸三异戊酯(TiAP)对Pu(Ⅳ)的萃取性能。实验考察了HNO3浓度、相比对TiAP萃取Pu(Ⅳ)的影响,以及TiAP与Pu(Ⅳ)的三相形成情况。实验结果表明:随水相硝酸浓度的增大,TiAP萃取Pu(Ⅳ)的分配比增大;在30℃、水相HNO3浓度为3.5mol/L条件下,  相似文献   

13.
研究了不同浓度三烷基氧膦(TRPO)/煤油体系萃取铀的能力以及三相出现情况。结果表明,50% TRPO/煤油体系在常温下负载60g/L铀时不会出现三相,并对Np(Ⅳ),Pu(Ⅳ),Am(Ⅲ),Ee(Ⅲ)和Tc(Ⅶ)具有良好的萃取能力。说明采用该体系能从乏燃料溶解液中萃取回收铀、钚的同时去除次锕系元素和锝,但TRPO在萃取少量的Zr时会出现三相。  相似文献   

14.
二(2,4,4三甲基戊基)-二硫代膦酸萃取分离Am和Cm的研究   总被引:1,自引:1,他引:0  
研究了二(2,4,4三甲基戊基)-二硫代膦酸(HBTMPDTP)对Am与Cm的萃取和分离,单级萃取分离因数约为3。pH值、离子强度、萃取剂浓度、温度等因素对分离因子影响不大。8级萃取、3级洗涤的多级逆流萃取实验表明:HBTMPDTP能够使Am与Cm得到有效分离。萃取实验的计算值和实验值符合很好。根据串级计算给出了HBTMPDTP萃取分离压水堆废液中镅和锔的推荐流程,采用9级萃取、4级洗涤的萃取分离流程,镅的萃取率为99.92%,放化纯度达到99.99%,质量纯度达到99.82%;锔的萃余率为94.90%,放化纯度达到99.90%,质量纯度达到97.68%,镅中锔的分离因数为20,锔中镅的分离因数为1186。可以满足Am与Cm的分离-嬗变要求。  相似文献   

15.
小型环隙式离心萃取器的水力学和传质研究   总被引:2,自引:0,他引:2  
用单级=10mm小型环隙式离心萃取器研究了水-30%TRPO-煤油体系在不同条件下的水力学特性和硝酸、Fe3+和Nd3+的传质特性。在转速4000—4500r/min、流量<600mL/h、相比(o/a)1/10—10/1情况下,硝酸和Nd3+的传质级效率比较高,为90%左右。由于Fe3+的萃取动力学速率比较慢,因此其萃取级效率比较低。  相似文献   

16.
合成了1-苯基-3-甲基-4-氰硫基-5-吡唑酮(PMTCP),研究了该试剂单独萃取及其与2,2’-联吡啶协同萃取镅和铕的行为。实验结果表明,该试剂单独萃取镅和铕的能力都比较低,但优先萃取镅;含氮协萃剂2,2’-联吡啶的加入可以明显提高镅的萃取率,并将镅和铕的分离因数α(Am/Eu)由PMTCP单独萃取时的2.6提高到4.0。  相似文献   

17.
N,N,N′,N′-四异丁基-3-氧戊二酰胺对钼(Ⅵ)的萃取   总被引:4,自引:0,他引:4  
研究了N,N,N′,N′-四异丁基-3-氧戊二酰胺(TiBOPDA)-40%正辛醇/煤油溶液从HNO3溶液中萃取Mo(Ⅵ)的行为。实验结果表明,温度对Mo(Ⅵ)的萃取分配比影响很小,萃取过程无明显热效应。在HNO3浓度为1mol/L时,Mo(Ⅵ)以MoO2^2 形式被萃取,MoO2(NO3)2与TiBOPDA形成配位比为1:2的配合物,TiBOPDA萃取Mo(Ⅵ)为中性配合萃取。文章给出了萃取平衡方程式。  相似文献   

18.
硝酸铝存在下,测定了UO2(NO2)2(初始质量浓度为2.5g/L)和HNO3(初始浓度为0~2mol/L)在稀TBP/煤油(ψ≤10%)和水相溶液之间的分配比,并采用非线性最小二乘法拟合了UO2(NO3)和HNO3的表观萃取平衡常数表达式。利用拟合得到的平衡常数计算得到的D(U(Ⅵ))和D(H^ )与实验值符合较好,D(U(Ⅵ))平均偏差约为10%,D(H^ )的平均偏差小于5%。  相似文献   

19.
研究了二环己基18冠6(DC18C6)从硝酸介质中对锶的萃取,选用了正辛醇和第二辛醇作为稀释剂,研究了DC18C6-正辛醇(和第二辛醇)两种萃取体系对锶和硝酸的萃取,同时考察了水相中主要阳离子Fe3+、Al3+、Na+对锶萃取的影响。结果表明,Fe3+和Al3+对锶的萃取都起着盐析作用,Na+在低酸时起盐析作用,而在高酸时起竞争作用。用高放模拟料液进行的实验表明:这两种体系对锶具有较高的萃取能力,并且对其它阳离子有很高的分离系数。反萃实验表明可以用纯水或稀酸从有机相中反萃钢,二次反萃的总反萃率达到98%以上。根据提出的流程,冠醚萃取法有可能用于从中等酸度(0.5-1.0mol/L)的高放废液中去除锶。  相似文献   

20.
测定了不同锆、锝浓度和不同硝酸浓度下,Zr(Ⅳ),TcO4^-在HNO3-30%TBP/0K中的分配比。实验结果表明,TcO4^-不仅以阴离子形式与锆配位形成共萃,而且还可以促进锆的萃取,溶液中存在明显的相互促进被萃取现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号