首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
用AI-9吸附剂从盐湖卤水中吸附锂的试验研究   总被引:1,自引:0,他引:1  
研究了用AI-9吸附剂从盐湖卤水中吸附锂,考察了卤水温度、卤水中锂离子质量浓度、接触时间、进液方式对锂吸附率的影响以及吸附剂的破碎情况。试验结果表明:在卤水温度20℃、卤水中锂离子质量浓度较高(350mg/L)条件下,吸附接触10min,卤水以上进液方式运行,吸附剂的工作容量和工作效率都较高,且破碎率较低,可以满足从盐湖卤水中提取锂的工业生产要求。  相似文献   

2.
采用溶剂萃取法从盐湖卤水中提取锂,筛选出萃取剂为TBP,协萃剂为MIBK,共萃剂为FeCl_3,稀释剂为磺化煤油。优化萃取条件如下:40%TBP+20%MIBK+40%磺化煤油、O/A=2.5、n(Fe~(3+)/Li~+)=2.5、初始水相H+0.04mol/L。结果表明,单级锂萃取率为91.21%,镁萃取率为2.10%,锂镁分离系数为483.05。经化学法、红外吸收光谱法证实了新萃合物的生成,并通过斜率法初步推断其组成为LiFeCl_4·4TBP·MIBK。根据离子缔合萃取理论讨论了萃取过程,证实了该混合体系适合从高Mg/Li、低酸度的氯化物型盐湖中萃取锂。  相似文献   

3.
铝盐吸附剂从盐湖卤水中吸附锂的研究   总被引:2,自引:0,他引:2  
用氢氧化铝和氢氧化锂制备铝盐吸附剂,研究了其对锂的吸附性能。结果表明,在Al(OH)3/Li(OH)摩尔比为2.0,酸洗时间3~4h.酸洗pH为5.8的条件下制备出的铝盐吸附剂,对锂离子的吸附性能稳定,吸附量可达到0.6~0.9mg.g^-1,而且对卤水中锂的选择性较高,对Mg^2+,Na^+,K^+等金属离子基本不吸附。  相似文献   

4.
从盐湖卤水萃取锂的影响因素分析   总被引:2,自引:0,他引:2  
文章介绍了萃取法从盐湖卤水分离镁锂的工艺过程和机理,主要对影响萃取率的几个关键因素进行了分析,总结了TBP-FeCl3-200#溶剂汽油萃取体系适宜的配比,确定了最优萃取条件。  相似文献   

5.
利用碳酸钙、碳酸镁、碳酸锂在溶液中的溶度积的差异,研究了用碳酸钠从吸附法盐湖卤水提锂所得高锂溶液中去除钙、镁离子,考察了反应时间、碳酸钠用量、体系pH及晶种循环方式对钙、镁去除率的影响。试验结果表明:用质量浓度为50g/L的碳酸钠溶液,在反应时间30min、碳酸钠用量为沉淀钙、镁所需理论量、溶液pH为11.5,采用晶种循环方式改善过滤性能条件下,钙、镁去除率分别为98.8%和99.98%,所得溶液中,Ca2+质量浓度为9mg/L,Mg2+质量浓度为0.7mg/L,整个除杂过程锂损失仅为3%左右。  相似文献   

6.
中国的锂资源主要赋存于高镁锂比盐湖卤水中,提锂难度较高,单一分离手段难以高效提锂,多种盐湖提锂技术的耦合是盐湖提锂的未来发展趋势。采用吸附—膜耦合法对盐湖卤水进行处理,在优化条件下实现了高选择性锂吸附,动态脱附后卤水镁锂比从105.2降低至1.49。考察了不同条件对纳滤膜分离纯化锂的影响。纳滤膜在稀释倍数1.0、温度20 ℃、操作压力0.4 MPa、pH 4.66、产水原料液比0.54的条件下,锂截留率为2.63%、分离因子为27.3、渗透通量为7.125 L/(m2?h),最终产水镁锂比从最初的105.2降低至0.05,实现了对高镁锂比盐湖卤水中锂资源的绿色高效提取。  相似文献   

7.
我国锂资源分布及提取工艺研究现状   总被引:1,自引:0,他引:1  
介绍了国内锂资源分布及提取锂的方法,着重介绍了从盐湖卤水中提取锂的研究现状,评价了不同提取工艺。结合我国锂资源状况,预测了锂提取技术的研究方向。  相似文献   

8.
文章研究了利用盐卤水萃取液制备碳酸锂的方法和影响因素,解决了低锂离子条件下的沉锂困难,并得到了符合国家标准的一级碳酸锂,从而使盐湖卤水提取锂具备了实现工业化的可能。  相似文献   

9.
混合体系盐湖锂萃取性能及机理研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为深入探究混合体系对盐湖卤水中锂离子的萃取性能及机理,重点考察了萃取相比、铁锂摩尔比对40%TBP-20%BA-40%磺化煤油体系的影响。选取O/A=1.5、n(Fe~(3+)/Li~+)=1.5作为优化条件,得到单级锂萃取率为87.34%、镁萃取率为3.89%,该结果有利于后续串级试验及进行工业设计。另运用氯桥理论分析了Li[FeCl_4]中Fe~(3+)、Cl~-、Li~+以离域π键相结合的共萃取现象。根据萃取前后核磁共振图谱初步推测水相中Li~+配位水分子与TBP及BA分子中P=O、C=O极性官能团以氢键缔合。另根据离子缔合理论提出了修正的静电模型,讨论了萃取过程中Li~+、Mg~(2+)等杂质离子间的竞争关系。  相似文献   

10.
从盐湖卤水中萃取锂的盐析效应研究   总被引:6,自引:0,他引:6  
陈富珍  陈正炎 《稀有金属》1997,21(6):411-414,462
研究了五种常用的无机氯化物加入水相中的锂萃取过程的盐析效应,其强弱次序为AlCl3〉SrCl2〉NaCl〉NH4Cl〉KCl。水相中与锂共存的饱和氯化镁可大大提高锂的萃取率,而不含氯化镁的水相萃取时,锂的萃取率极低,几乎不被SK-SE萃取,可见氯化镁的存在有很强的盐析效应。同时研究了不同Mg/Li的水相与锂萃取的关系,证明SK-SE体系对高镁卤水萃取锂特别有效,对不同Ca/Li的水相萃取时,锂的萃  相似文献   

11.
以吸附法盐湖卤水提锂溶液和碳酸钠为原料制备碳酸锂,研究了反应时间、锂质量浓度、反应温度、搅拌速度及洗涤条件对碳酸锂制备的影响。结果表明,以400 g/L碳酸钠溶液为沉淀剂,锂质量浓度18 g/L,反应温度30 ℃,130 r/min速度搅拌,反应1 h可以得到颗粒粒径大且均匀的碳酸锂,锂沉淀率达到85%以上;采用三段逆流、V水/V固=2/1、温度80~90 ℃的水对沉淀洗涤,可得碳酸锂含量99%以上的产品,洗涤过程锂损失2%。  相似文献   

12.
以某高锂混盐型盐湖卤水为研究对象,采用β-支链伯醇(A1416)萃取分离硼,考察了卤水初始pH、A1416浓度、萃取混合时间、相比O/A、温度等因素的影响,优化了萃取工艺参数,分析了硼和锂在萃取两相体系中的分配行为以及硼与锂、镁、钠和钾的分离情况。在卤水初始pH=0.5、有机相组成为50%A1416-50%260~#溶剂油、相比O/A=3/2、萃取混合时间5min、20℃的条件下,硼的单级萃取率大于66%,锂、镁、钠、钾的萃取率分别仅有0.54%、0.28%、0.84%和0.29%,硼与锂、镁、钠、钾的分离系数分别达到363、684、308和679,A1416显示出对硼的良好选择性。负载硼的有机相可用水进行反萃,得到富硼溶液。  相似文献   

13.
用吸附法从察尔汗盐湖卤水中提取锂   总被引:9,自引:0,他引:9  
研究了用两步吸附法从察尔汗高镁低锂盐湖卤水中提取锂。将卤水用水稀释并用盐酸调整pH至4~6之间,先用自制的锂吸附剂吸附锂、镁,用水淋洗负载吸附剂,获得含锂、镁溶液,再用阳离子交换树脂吸附锂、镁,之后用1mol/L HCl或60g/L NaCl溶液淋洗锂,用3mol/L HCl或150g/L NaCl溶液淋洗镁。含锂淋洗液用Na2CO3沉淀可获得Li2CO3产品。该方法简单,易行,无环境污染,经济效益明显。  相似文献   

14.
以盐湖析出钾镁肥后的老卤为原料,采用酸化—氨法沉镁—碳化联合工艺分离提取硼酸。酸化沉硼最佳工艺条件为:加酸量0.7%、反应温度60℃、冷冻时间5.5h。在该最佳工艺条件下,硼的直收率达到72%,粗硼酸产品干燥后纯度为72%,经一次重结晶后硼酸纯度为99.52%,达到硼酸国标GB/T 538—2006一等品的标准。碳化最佳工艺为:碳酸氢铵过量系数1.4、反应温度50℃、固液比10(g/L)、反应时间2h。在该最佳碳化工艺下,硼的浸出率为95.52%。该工艺操作简单、成本低,在将硼有效分离提取的同时,还能将卤水中的大部分镁分离并纯化得到高纯度氧化镁。  相似文献   

15.
通过沉淀法制备磁性铝盐吸附剂MASA,吸附剂为微米级,但有一定堆叠,铝、铁元素分布均匀。吸附剂的比饱和磁化强度为10.78emu/g,可通过磁场与卤水分离MASA,锂吸附量可达4~5mg/g,5次之内未发生明显变化,而且对卤水中锂的选择性较高,尤其对镁的分配比达到468。用饱和NaCl清洗后,清洗液中Li~+0.1g/L,Mg~(2+)296g/L,解析液中Li+0.175g/L,Mg~(2+)0.15g/L。  相似文献   

16.
废旧磷酸铁锂电池回收对减少环境污染与缓解锂资源压力有重要意义。传统废旧磷酸铁锂电池回收存在锂回收率低、废水处理成本高的问题。通过借鉴Li-Fe-P-H2O系E-pH图及磷酸铁锂电池充放电脱嵌锂的过程,提出采用“过氧化氢+硫酸”体系选择性回收锂。经XRD、SEM检测,提锂后橄榄石型的FePO4结构与原始LiFePO4相结构保持一致,微观形貌的变化也很小。优化条件下,Li浸出率达98%以上,同时Fe、P的浸出率在0.1%以下。得到的锂浸出液经净化后成功制备出电池级的碳酸锂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号