首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Invariant chain (Ii) associates with class II MHC molecules and is crucial for Ag presentation by class II molecules. A general explanation for how invariant chain (Ii) associates with polymorphic MHC class II molecules has been suggested by the crystallographic structure of CLIP (class II-associated Ii peptide) complexed with an HLA class II molecule, HLA-DR3. We show here that methionine residues at positions 93 and 99 in Ii are important in MHC class II-mediated Ag presentation, but function in an allele-dependent manner. Introduction of a Met-->Ala mutation at position 99 in Ii (M99AIi) impaired presentation of peptides derived from exogenous proteins by I-Ad and I-Au class II molecules. Mutating Met-->Ala in Ii at position 93 (M93AIi) abrogated presentation by I-Au molecules, but not by I-Ad. Impaired Ag presentation was associated with conformationally altered expression of I-A molecules on the surface of cells expressing mutated Ii. Cell surface CLIP staining and immunoprecipitation studies showed that both I-Ad and I-Au molecules were associated with an increased abundance of Ii peptides, CLIP, in cells expressing mutated Ii. These results show that methionine 93 and methionine 99 play an important physiologic role in Ii association with class II molecules by regulating release of CLIP from class II in the endocytic compartments to allow binding of cognate peptides.  相似文献   

2.
Antigen-presenting cells (APC) degrade endocytosed antigens into peptides that are bound and presented to T cells by major histocompatibility complex (MHC) class II molecules. Class II molecules are delivered to endocytic compartments by the class II accessory molecule invariant chain (Ii), which itself must be eliminated to allow peptide binding. The cellular location of Ii degradation, as well as the enzymology of this event, are important in determining the sets of antigenic peptides that will bind to class II molecules. Here, we show that the cysteine protease cathepsin S acts in a concerted fashion with other cysteine and noncysteine proteases to degrade mouse Ii in a stepwise fashion. Inactivation of cysteine proteases results in incomplete degradation of Ii, but the extent to which peptide loading is blocked by such treatment varies widely among MHC class II allelic products. These observations suggest that, first, class II molecules associated with larger Ii remnants can be converted efficiently to class II-peptide complexes and, second, that most class II-associated peptides can still be generated in cells treated with inhibitors of cysteine proteases. Surprisingly, maturation of MHC class II in mice deficient in cathepsin D is unaffected, showing that this major aspartyl protease is not involved in degradation of Ii or in generation of the bulk of antigenic peptides.  相似文献   

3.
Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B-/- or Cat D-/- antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B-/- splenocytes, as it did in Cat D-/- cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.  相似文献   

4.
Sequence variability in MHC class II molecules plays a major role in genetically determined susceptibility to insulin-dependent diabetes mellitus (IDDM). It is not yet clear whether MHC class II polymorphism allows selective binding of diabetogenic peptides or regulates some key intracellular events associated with class II-restricted Ag presentation. In this study, we have employed gene transfer techniques to analyze the intracellular events that control peptide acquisition by the unique class II molecule expressed by nonobese diabetic mice (I-Ag7). This structurally unique class II molecule fails to demonstrate stable binding to antigenic peptides and fails to undergo the conformational change associated with stable peptide binding to class II molecules. The experiments reported here demonstrate that I-Ag7 can productively associate with two protein cofactors important in class II-restricted Ag presentation, invariant chain (Ii) and DM. DM participates in the removal of the Ii-derived class II-associated Ii chain peptide and the p12 degradation product from the I-Ag7 molecule. In addition, I-Ag7 undergoes a conformational change when DM is expressed within the APC. Finally, DM can mediate accumulation of peptide/class II complexes on the surface of APCs. Collectively, our experiments indicate that the failure of the I-Ag7 molecule to stably bind peptide cannot be attributed to a failure to interact with the DM or Ii glycoproteins.  相似文献   

5.
Transport of newly synthesized MHC class II glycoproteins to endosomal Ag processing compartments is mediated by their association with the invariant chain (Ii). Targeting to these compartments is dependent upon recognition of leucine-based endo. somal/lysosomal targeting motifs in the Ii cytosolic domain. Ii, like many molecules that contain leucine-based endosomal targeting motifs, is phosphorylated in vivo. In this report we demonstrate that the cytosolic domain of the p35 Ii isoform is phosphorylated in class II Ii complexes isolated from human B lymphoblastoid cell lines or freshly obtained PBMC. Mutation of serine residue 6 or 8 prevents phosphorylation of Ii-p35 expressed in HeLa cells. Treatment of B lymphoblastoid cell lines with the serine/threonine kinase inhibitor staurosporine prevented Ii phosphorylation and significantly delayed trafficking of newly synthesized class II Ii complexes to endosomal Ag processing compartments. By contrast, staurosporine had no effect on the rate of transport of class I or class II glycoproteins through the Golgi apparatus and did not inhibit the delivery of the chimeric molecule Tac-DM, to endocytic compartments, suggesting that staurosporine does not nonspecifically inhibit protein transport to the endocytic pathway. These results demonstrate that phosphorylation regulates the efficient targeting of MHC class II Ii complexes to Ag processing compartments and strongly suggest that this effect is mediated by phosphorylation of the MHC class II-associated Ii chain.  相似文献   

6.
7.
Exogenous Ags may be presented by MHC class II molecules through two distinct pathways distinguished by their sensitivity to drugs that inhibit the protein synthesis. Using this approach, we previously showed that the subunits Ig-alpha and Ig-beta, associated to B cell Ag receptor, targeted Ags either to newly synthesized or to preexisting pools of MHC class II molecules, respectively. To further characterize these two Ag presentation pathways, we altered the intra-Golgi transport of newly synthesized MHC class II by stably overexpressing, in B cells, mutants of a small G protein involved in the intra-Golgi transport, Rab6. Overexpression of GTP-bound rab6 (Q72L) mutant proteins reduced the cell surface arrival of MHC class II molecules and consequently slowed down Ag presentation dependent upon newly synthesized class II molecules. In contrast, this mutant had no effect on Ag presentation dependent upon preexisting pools of class II molecules, and the overexpression of an inactive GDP-bound form of rab6 (T27N) did not affect any Ag presentation pathway. MHC class II-restricted Ag presentation pathways can therefore be distinguished by their sensitivity to the overexpression of proteins modifying the intracellular transport of newly synthesized class II molecules.  相似文献   

8.
Dendritic cells (DCs) express several receptors for the Fc portion of immunoglobulin (Ig)G (FcgammaR), which mediate internalization of antigen-IgG complexes (immune complexes, ICs) and promote efficient major histocompatibility complex (MHC) class II-restricted antigen presentation. We now show that FcgammaRs have two additional specific attributes in murine DCs: the induction of DC maturation and the promotion of efficient MHC class I-restricted presentation of peptides from exogenous, IgG-complexed antigens. Both FcgammaR functions require the FcgammaR-associated gamma chain. FcgammaR-mediated MHC class I-restricted antigen presentation is extremely sensitive and specific to immature DCs. It requires proteasomal degradation and is dependent on functional peptide transporter associated with antigen processing, TAP1-TAP2. By promoting DC maturation and presentation on both MHC class I and II molecules, ICs should efficiently sensitize DCs for priming of both CD4(+) helper and CD8(+) cytotoxic T lymphocytes in vivo.  相似文献   

9.
The maturation of invariant chain (Ii):MHC class II complexes into peptide-loaded alpha beta dimers occurs by proteolytic removal of Ii chain and binding of antigenic peptides derived from exogenous and endogenous Ags. A fragment of the Ii chain (class II-associated invariant chain peptide (CLIP) remains associated with class II alpha beta and is an intermediate in this process. Conversion of alpha beta:CLIP complexes into alpha beta:peptide complexes is facilitated by HLA-DM. Two unique mAbs, specific for I-Ab bound to human CLIP and I-Ab bound to DR alpha peptide, were used to assess the formation of these peptide:class II complexes in a human B lymphoblastoid cell line (B-LCL) (Swei) transfected with I-A(b). In multiple independent Swei:I-Ab transfectants, the amount of human CLIP (hCLIP):I-Ab expressed was inversely proportional to the amount of DR alpha 52-68:I-Ab; quantitative differences in HLA-DM expression accounted for this phenotype. In the low DM transfectant, a substantial proportion of I-Ab, but not DR molecules, was altered structurally and unable to present native protein Ags. Addition of DM transgenes to the DM-low cells resulted in an increase in DR alpha 52-68:I-Ab coupled with a decrease in hCLIP:I-Ab complexes and restoration of exogenous protein Ag presentation. The DR5 molecules in Swei cells, which have a lower affinity for hCLIP than I-Ab, were not affected by low DM expression, suggesting that the amount of DM required for conversion of CLIP:class II to peptide:class II may depend on the affinity of the class II molecules for CLIP or DM.  相似文献   

10.
11.
The class II-associated invariant chain peptide (CLIP) region of invariant chain (Ii) is believed to play a critical role in the assembly and transport of MHC class II alphabetaIi complexes through its interaction with the class II peptide-binding site. The role of the CLIP sequence was investigated by using mutant Ii molecules with altered affinity for the DR1 peptide-binding site. Both high- and low-affinity mutants were observed to efficiently assemble with DR1 and mediate transport to endosomal compartments in COS cell transfectants. Using N- and C-terminal truncations, a region adjacent to CLIP within Ii(103-118) was identified that can complement loss of affinity for the peptide-binding site in mediating efficient assembly of alphabetaIi. A C-terminal fragment completely lacking the CLIP region, Ii(103-216), was observed binding stably to class II molecules in immunoprecipitation studies and experiments with purified proteins. The Ii(103-118) region was required for this binding, which occurs through interactions outside of the alphabeta peptide-binding groove. We conclude that strong interactions involving Ii(103-118) and other regions of Ii cooperate in the assembly of functional alphabetaIi under conditions where CLIP has little or no affinity for the class II peptide-binding site. Our results support the hypothesis that the CLIP sequence has evolved to avoid high-stability interactions with the peptide-binding sites of MHC class II molecules rather than as a promiscuous binder with moderate affinity for all class II molecules.  相似文献   

12.
Binding of antigenic peptides to MHC class II (MHC-II) molecules occurs in the endocytic pathway. From previous studies in B lymphocytes, it is believed that most but not all of the newly synthesized MHC-II molecules are directly targeted from the trans-Golgi network to endosomal compartments. By using pulse-chase metabolic labeling followed by cell surface biotinylation, we show here that in contrast to an EBV-transformed B cell line and human monocytes, the majority of newly synthesized MHC-II molecules (at least 55 +/- 13%) are first routed to the plasma membrane of dendritic cells derived from human monocytes. They reach the cell surface in association with the invariant chain (Ii), a polypeptide known to target MHC-II to the endosomal/lysosomal system. Following rapid internalization and degradation of Ii, these alphabeta Ii complexes are converted into alphabeta-peptide complexes as shown by their SDS stability. These SDS-stable dimers appear as soon as 15 to 30 min after internalization of the alphabeta Ii complexes. More than 80% of alphabeta dimers originating from internalized alphabeta Ii complexes are progressively delivered to the cell surface within the next 2 h. Depolymerization of microtubules, which delays the transport to late endosomal compartments, did not affect the kinetics of conversion of surface alphbeta Ii into SDS-stable and -unstable alphabeta dimers. Altogether, these data suggest that newly liberated class II alphabeta heterodimers may bind peptides in different compartments along the endocytic pathway in dendritic cells derived from human monocytes.  相似文献   

13.
Presentation of material derived from pathogenic organisms to the immune system requires uptake of antigens into antigen presenting cells, processing into peptide fragments and loading of the resulting fragments onto major histocompatibility complex (MHC) class II molecules. MHC class II-restricted antigen presentation involves both the biosynthetic as well as the endocytic pathway of antigen-presenting cells. In recent years, the general mechanisms that govern these processes have been delineated, and specialized organelles have been characterized in which processing and loading of antigens takes place. Here, we review the work that has led to the characterization of these MHC class II compartments, and describe the use of organelle electrophoresis and two-dimensional gel electrophoresis to analyze the molecular composition of the different subcellular organelles involved in MHC class II-restricted antigen presentation as well as in antigen uptake.  相似文献   

14.
15.
MHC class II expression was examined in macrophages infected with Mycobacterium tuberculosis. IFN-gamma increased the surface expression of class II molecules in THP-1 cells and this was markedly reduced in cells infected with M. tuberculosis. Despite this effect, steady state levels of HLA-DRalpha, HLA-DRbeta, and invariant (Ii) chains were equivalent in control and infected cells. Metabolic labeling combined with pulse-chase experiments and biochemical analysis showed that the majority of class II molecules in infected cells became resistant to endoglycosidase H, consistent with normal Golgi processing. However, results of intracellular staining and dual color confocal microscopy revealed a significant defect in transport of newly synthesized class II molecules through the endocytic compartment. Thus, compared with findings in control cells, class II molecules in infected cells colocalized to a minimal extent with a lysosomal-associated membrane protein-1+ endosomal compartment. In addition, in contrast to control cells, class II molecules in infected cells failed to colocalize with endocytosed BSA under conditions where this marker is known to label late endosomes, lysosomes, and the MHC class II compartment. Consistent with defective transport along the endocytic pathway, the maturation of SDS-stable class II alphabeta dimers--dependent upon removal of Ii chain and peptide loading of class II dimers in the MHC class II compartment--was markedly impaired in M. tuberculosis-infected cells. These findings indicate that defective transport and processing of class II molecules through the endosomal/lysosomal system is responsible for diminished cell surface expression of MHC class II molecules in cells infected with M. tuberculosis.  相似文献   

16.
To study the relation between the form of an Ag and the response to it, we compared presentation in vitro with hen egg lysozyme (HEL)-specific T cells from TCR transgenic mice of free HEL and liposome-encapsulated HEL by different APC. HEL-specific splenic B cells or bone marrow-derived dendritic cells were incubated with free HEL or HEL-containing liposomes targeted by Ab to either surface Ig, the Fc receptor, or MHC class I and II molecules. Ag presentation by HEL-specific B cells was at least 100-fold more efficient for HEL in surface Ig-targeted liposomes than free HEL taken up by the same receptor or HEL in liposomes targeted to class I or II molecules. Ag presentation by dendritic cells from Fc receptor-targeted vesicles was augmented 1,000-10,000-fold compared with free Ag or nontargeted liposomes, but presentation was also efficient when Ag was targeted to class I or II molecules. These results indicate that Ag-specific B cells and dendritic cells can be equally efficient in stimulating IL-2 production by Ag-specific T cells from unimmunized TCR transgenic mice when the Ag is multivalent and taken up by appropriate receptors. In contrast to B cells, which require engagement of surface Ig for optimal presentation, dendritic cells may present Ag by means of several different cell surface molecules.  相似文献   

17.
Ag presentation by APC to class II MHC-restricted T cells involves a sequence of events: 1) intracellular processing of protein Ag into immunogenic peptides, 2) specific binding of peptides to class II MHC molecules, and then 3) transport of the MHC-peptide complexes to the plasma membrane. The critical event in the activation of T cells by APC is the recognition of MHC-associated antigenic determinants by the TCR/CD3 complex. In this report we describe the isolation and characterization of a mutant APC with a defect in an intracellular process that results in its inability to form MHC-peptide complexes for recognition by T cells. The mutant APC cannot present many different protein Ag with both I-A and I-E molecules but is able to present processing-independent peptides. The functional defect in the mutant APC is not caused by either a decrease in expression or a structural mutation in class II MHC molecules. Further, there is no mutation in the invariant chain (li) and it displays a normal kinetics of association and dissociation from the class II MHC molecules during biosynthesis. Although the mutation is not in the genes encoding for the class II MHC molecules or li, the mutant APC expresses class II MHC molecules with distinct serological epitopes suggestive of an altered conformation. Pulse-chase experiments suggest that a conformational difference between I-Ad molecules of wild-type and mutant cells occurs after the class II molecules exit from the endoplasmic reticulum but while they are still associated with li. The mutant cell produces few compact (SDS-resistant) class II heterodimers. This mutant APC provides a tool for studying the cell biology of Ag processing and presentation.  相似文献   

18.
The significant contributions this past year to our understanding of IgE receptor (Fc epsilon RI) signaling in mast cells include studies with truncated Syk in a vaccinia expression system and Syk-negative variants of rat basophilic (RBL-2H3) cells. These studies demonstrate an essential role for Syk in initiating signals for secretion and release of arachidonic acid via phospholipase A2 and mitogen-activated protein kinase. A newly recognized addition to the repertoire of Fc epsilon RI-mediated signaling systems is the activation of sphingosine kinase, which contributes to calcium mobilization in mast cells. Advances have been made in our understanding of other receptors that regulate proliferation and differentiation of mast cells, and in our understanding of the ability of mast cells to mount acquired and acute responses to antigenic and bacterial challenge.  相似文献   

19.
Bacterial enteritides of poultry   总被引:1,自引:0,他引:1  
We report an experimental system for abundant expression of specific peptide-class II complexes in vivo and in vitro. We have constructed a cassette which allows for the replacement of the CLIP region of invariant chain (Ii) with an antigenic peptide. In fibroblasts expressing an altered Ii protein, in which CLIP has been replaced with peptide 52-68 from the class II I-E alpha chain (pEalpha), pEalpha-I-Ab complexes are formed with high efficiency. This peptide loading occurs in the endoplasmic reticulum (ER) when the Ii:pEalpha fusion protein associates with the I-Ab alpha and beta chains. The trimeric complexes of Ii:pEalpha and I-Ab molecules are stable in SDS and can be detected by the pEalpha-I-Ab-specific mAb, YAe, indicating that pEalpha is bound in the class II groove in the context of full-length Ii. These data strongly suggest that the CLIP region of intact Ii prevents peptide loading in the ER by binding in the peptide binding groove of newly synthesized class II alphabeta dimers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号