首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phospholipase A2 [EC 3.1.1.4] treatment of pig kidney Na+,K(+)-ATPase [EC 3.6.1.3] labeled with fluorescence probes at the alpha-chain reduced the extent of the fluorescence intensity change of an N-[p-(2-benzimidazolyl)phenyl]maleimide (BIPM) probe at Cys-964 to below one-third of the control level accompanying the accumulation of phosphoenzymes. However, it only induced a slight decrease in that of a fluorescence isothiocyanate (FITC) probe at Lys-501 with a large decrease in the rate of change. The addition of phosphatidylserine (PS) or phosphatidylinositol (PI) to the phospholipase-treated BIPM-FITC-labeled enzyme increased the rate of the FITC fluorescence change. Phospholipase treatment of the BIPM-enzyme greatly reduced the Na+,K(+)-ATPase activity. The addition of PS or PI to the treated enzyme induced reactivation. These data and others suggest that Cys-964 and Glu-953 (Rb+ protectable dicyclohexyl carbodiimide binding site) are located in the vicinity of the surface area of the enzyme where hydrocarbon chains of phospholipids are present, and conserved H-bonding amino acids, Thr-955 and Ser-962, are located rather near the center of a domain forming a cation binding route or cage with other hydrophobic transmembrane segments. These data may indicate that the interaction between the BIPM probe and the hydrocarbon chains of phospholipids changes in such a way as to sense the change in the binding state of various ligands accompanying the sequential appearance of reaction intermediates of the enzyme.  相似文献   

2.
H+,K+-ATPase preparations from pig stomach were modified with a sulfhydryl fluorescence reagent, N-[p-(2-benzimidazolyl)phenyl] maleimide (BIPM). The addition of ATP to the modified enzyme preparations in the presence of Mg2+ decreased the BIPM fluorescence but increased the Trp fluorescence. After exhaustion of ATP, the fluorescence intensities increased and decreased to the original levels, respectively. The results of stopped flow and rapid quenching experiments suggested that the decrease in BIPM fluorescence (36/s) was accompanied by binding of Mg2+ and ATP or phosphorylation (35 36/s) which was followed by slower increases in Trp fluorescence (24/s) and light scattering (20/s). Tosylphenylalanyl chloromethyl ketone-trypsin treatment of the modified preparations, which showed an about 1% decrease in BIPM fluorescence accompanying phosphorylation, gave one major fluorescent peptide peak on reverse-phase chromatography. Amino acid sequence analysis of the peptide revealed the following sequence, Ser-Pro-Glu-X-Thr-His-Glu-Ser-Pro-Leu-Glu-Thr-Arg. On comparison with the amino acid sequence deduced from cDNA from pig stomach [Maeda, M., Ishizaki, J., and Futai, M. (1988) Biochem. Biophys. Res. Commun. 157, 203-209], X was shown to correspond to Cys241 of the alpha-chain in H+,K+-ATPase. These data and others suggest that the decrease in BIPM fluorescence at Cys241 reflects some molecular event triggered by the binding of ATP with Mg2+ and/or phosphorylation, whereas the increases in the intrinsic Trp fluorescence and light scattering reflect one after phosphorylation.  相似文献   

3.
The kinetics of Na+-dependent partial reactions of the Na+,K+-ATPase were investigated via the stopped-flow technique using the fluorescent labels RH421 and BIPM. After the enzyme is mixed with MgATP, both labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau1 approximately 180 s-1 (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3 --> E2P(Na+)3 + ADP). The rate of the phosphorylation reaction measured by the acid quenched-flow technique was 190 s-1 at 100 microM ATP, suggesting that phosphorylation controls the kinetics of the RH421 signal and that the conformational change is very fast (>/=600 s-1). The rate of the RH421 signal was optimal at pH 7.5. The Na+ concentration dependence of 1/tau1 showed half-saturation at a Na+ concentration of 8-10 mM with positive cooperativity involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high affinity ATP binding site determined from the ATP concentration dependence of 1/tau1 was 7.0 (+/-0.6) microM, while the apparent Kd for the low affinity site and the rate constant for the E2 to E1 conformational change evaluated in the absence of Mg2+ were 143 (+/-17) microM and 相似文献   

4.
Na+,K(+)-ATPase, supporting the ionic homeostasis of the cell, is under control of Na+, K+, Mg2+, and ATP. The regulating effect of Mg2+ is rather unclear, whereas the Na+/K+ ratio in the cytoplasm is a potent regulatory factor, especially for osmotic balance in excitable cells. We have demonstrated two possibilities for regulation of ion pumping activity: First, via the number of Na+,K(+)-ATPase molecules under operation, and second, via changes in the turnover rate of the active molecules. In the presence of low ATP concentration, which is typical for cells with membrane damage (ischemic cardiac myocytes, tumor cells, fatigued muscles) Na+,K(+)-ATPase is transformed to a regime of the decreased efficiency. Radiation inactivation study demonstrates the weakening of the interprotein interactions in the enzyme complexes during ATP deficiency. Thus, measurements of ATPase activity of the purified enzyme under optimal conditions in vitro may be useless for the discrimination of pathological from normal tissues. In such a case, the estimation of lipid composition and microviscosity of the membranes under study could be important. This review briefly discusses several basic mechanisms of the regulation of Na+,K(+)-ATPase--an integral protein of the outer cell membranes.  相似文献   

5.
H+, K(+)-ATPase is a proton pump responsible for gastric acid secretion. It actively transport proton and K+ coupled with the hydrolysis of ATP, resulting in the formulation of a 10(6) fold proton gradient across the plasma membrane of parietal cells. The pump belongs to a family of P-type ATPases which include the Na+ pump (Na+, K(+)-ATPase) and the Ca2+ pump (Ca(2+)-ATPase). This review focuses on the structure-function relationship of this proton pump by using functional antibodies, specific inhibitor(s), a fluorescent reagent and site-directed mutants. First we prepared monoclonal antibodies which modified the functions of the H+, K(+)-ATPase . One of the antibodies, HK2032 inhibited the H+, K(+)-ATPase activity and the chloride conductance in gastric vesicles opened by S-S cross-linking, suggesting that the chloride pathway is in the H+, K(+)-ATPase molecule, and that the H+, K(+)-ATPase is a multi-functional molecule. Other antibody, HK4001 inhibited the H+, K(+)-ATPase activity by inhibiting its phosphorylation step. By using this antibody we found an H+, K(+)-ATPase isoform in the rabbit distal colon. Second we found that scopadulcic acid B, a main ingredient of Paraguayan traditional herb, is an inhibitor specific for the H+, K(+)-ATPase. This compound inhibited the H+, K(+)-ATPase activity by stabilizing the K(+)-form of the enzyme. Third we studied the conformational changes of the H+, K(+)-ATPase by observing the fluorescence of FITC-labeled enzyme. H+, K(+)-ATPase did not utilize acetylphosphate instead the ATP as an energy source of active transport, suggesting that the energy transduction system is not common among P-type ATPases. Finally we constructed a functional expression system of the H+, K(+)-ATPase in human kidney cells. By using this functional expression system in combination with site-directed mutagenesis, we studied the significance of amino acid residues in the catalytic centers (a phosphorylation site and an ATP binding site) and the putative cation binding sites. We newly found the sites determining the affinity for cations.  相似文献   

6.
In this investigation the effects of alkali cations on the transient kinetics of Na,K-ATPase phosphoenzyme formation from either ATP (E2P) or Pi (E'2P) were characterized by chemical quench methods as well as by stopped-flow RH421 fluorescence experiments. By combining the two methods it was possible to characterize the kinetics of Na, K-ATPase from two sources, shark rectal glands and pig kidney. The rate of the spontaneous dephosphorylation of E2P and E'2P was identical with a rate constant of about 1.1 s-1 at 20 degreesC. However, whereas dephosphorylation of E2P formed from ATP was strongly stimulated by K+, dephosphorylation of E'2P formed from Pi in the absence of alkali cations was K+-insensitive, although in pig renal enzyme K+ binding to E'2P could be demonstrated with RH421 fluorescence. It appears, therefore, that in pig kidney enzyme the rapid binding of K+ to E'2P was followed by a slow transition to a nonfluorescent form. For shark enzyme the K+-induced decrease of RH421 fluorescence of Pi phosphorylated enzyme was due to K+ binding to the dephosphoenzyme (E1), thus shifting the equilibrium away from E'2P. When Pi phosphorylation was performed with enzyme equilibrated with K+ or its congeners Tl+, Rb+, and Cs+ but not with Na+ or Li+, both the phosphorylation and the dephosphorylation rates were considerably increased. This indicates that binding of cations modifies the substrate site in a cation-specific way, suggesting an allosteric interaction between the conformation of the cation-binding sites and the phosphorylation site of the enzyme.  相似文献   

7.
The present study describes the effect of methyl isocyanate (MIC) on rabbit cardiac microsomal Na+, K(+)-ATPase. Addition of MIC in vitro resulted in dose-dependent inhibition of Na+, K(+)-ATPase, Mg(2+)-ATPase and K(+)-activated p-nitrophenyl phosphatase (K(+)-PNPPase). Activation of Na+, K(+)-ATPase by ATP in the presence of MIC showed a decrease in Vmax with no change in Km. Similarly, activation of K+ PNPPase by PNPP in the presence of MIC showed a decrease in Vmax with no change in Km. The circular dichroism spectral studies revealed that MIC interaction with Na+, K(+)-ATPase led to a conformation of the protein wherein the substrates Na+ and K+ were no longer able to bind at the Na(+)- and K(+)-activation sites. The data suggest that the inhibition of Na+, K(+)-ATPase was non-competitive and occurred by interference with the dephosphorylation of the enzyme-phosphoryl complex.  相似文献   

8.
When studying enzymic and fluorescence properties of myosin and DTNB-treated myosin in the presence of K+, Na+, Li+, NH4+, Ca2+ and Mg2+ cations the following results were obtained. By the intrinsic protein fluorescence techniques no essential structural changes of myosin molecule at the dissociation of the DTNB light chain and activation myosin ATPase in the presence of different cations were found. The decrease of K+-EDTA-, the increase of Mg2+-activated and the stability of Ca2+-activated myosin ATPase may be the result of the modification of SH1 or SH2 sulfhydryl groups when treating the DTNB myosin in our conditions. The different level of decrease of the K+- and NH4+-activated myosin. ATPase may be explained by the fact, that myosin sulfhydryl groups have different effects on the activation of its ATPase by these cations.  相似文献   

9.
We investigated in intact cortical kidney tubules the role of PKA-mediated phosphorylation in the short-term control of Na+,K+-ATPase activity. The phosphorylation level of Na+,K+-ATPase was evaluated after immunoprecipitation of the enzyme from 32P-labelled cortical tubules and the cation transport activity of Na+,K+-ATPase was measured by ouabain-sensitive 86Rb+ uptake. Incubation of cells with cAMP analogues (8-bromo-cAMP, dibutyryl-cAMP) or with forskolin plus 3-isobutyl-1-methylxanthine increased the phosphorylation level of the Na+,K+-ATPase alpha-subunit and stimulated ouabain-sensitive 86Rb+ uptake. Inhibition of PKA by H-89 blocked the effects of dibutyryl-cAMP on both phosphorylation and 86Rb+ uptake processes. The results suggest that phosphorylation by PKA stimulates the Na+,K+-ATPase activity.  相似文献   

10.
ATP hydrolysis by Na+/K+-ATPase proceeds via the interaction of simultaneously existing and cooperating high (E1ATP) and low (E2ATP) substrate binding sites. It is unclear whether both ATP sites reside on the same or on different catalytic alpha-subunits. To answer this question, we looked for a fluorescent label for the E2ATP site that would be suitable for distance measurements by F?rster energy transfer after affinity labeling of the E1ATP site by fluorescein 5'-isothiocyanate (FITC). Erythrosin 5'-isothiocyanate (ErITC) inactivated, in an E1ATP site-blocked enzyme (by FITC), the residual activity of the E2ATP site, namely K+-activated p-nitrophenylphosphatase in a concentration-dependent way that was ATP-protectable. The molar ratios of FITC/alpha-subunit of 0.6 and of ErITC/alpha-subunit of 0.48 indicate 2 ATP sites per (alpha beta)2 diprotomer. Measurements of F?rster energy transfer between the FITC-labeled E1ATP and the ErITC-labeled or Co(NH3)4ATP-inactivated E2ATP sites gave a distance of 6.45 +/- 0.64 nm. This distance excludes 2 ATP sites per alpha-subunit since the diameter of alpha is 4-5 nm. F?rster energy transfer between cardiac glycoside binding sites labeled with anthroylouabain and fluoresceinylethylenediamino ouabain gave a distance of 4.9 +/- 0.5 nm. Hence all data are consistent with the hypothesis that Na+/K+-ATPase in cellular membranes is an (alpha beta)2 diprotomer and works as a functional dimer (Thoenges, D., and Schoner, W. (1997) J. Biol. Chem. 272, 16315-16321).  相似文献   

11.
An allelic variant of the ouabain-insensitive rat kidney Na+,K(+)-ATPase alpha 1-isoform was identified by chance in a cDNA library. The variant differed from the wild-type rat kidney Na+,K(+)-ATPase by a single G-to-C base substitution in the cDNA, which on amino acid level gave rise to a glutamine in place of the glutamate residue Glu329 previously suggested as a likely donator of oxygen ligands for Na+ and K+ binding. The variant cDNA was transfected into COS-1 cells and the transfectants expanded with success into stable cell lines that were able to grow in the presence of a concentration of ouabain highly cytotoxic to the parental cells containing only the endogenous COS-1 cell Na+,K(+)-ATPase. Under these conditions, the viability of the cells depended on the cation transport mediated by the ouabain-insensitive Glu329-->Gln variant, whose cDNA was shown by polymerase chain reaction amplification to be stably integrated into the COS-1 cell genome. The maximum specific ATP hydrolysis activity of isolated plasma membranes of the Glu329-->Gln variant did not differ significantly from that of plasma membranes containing the wild type. A method was established for measurement of the phosphorylation capacity of the expressed Glu329-->Gln variant and wild-type enzyme, and it was thereby demonstrated that the variant had a turnover number similar if not identical to that of the wild-type.  相似文献   

12.
The Na,K-ATPase activity of the sodium pump exhibits apparent multisite kinetics toward ATP, a feature that is inherent to the minimal enzyme unit, the alpha beta protomer. We have argued that this should arise from separate catalytic and noncatalytic sites on the alpha beta protomer as fluorescein isothiocyanate (FITC) blocks a high affinity ATP site on all alpha subunits and yet the modified Na, K-ATPase retains a low affinity response to nucleotides (Ward, D. G., and Cavieres, J. D. (1996) J. Biol. Chem. 271, 12317-12321). We now find that 2'(3')-O-(2,4,6-trinitrophenyl)8-azido-adenosine 5'-diphosphate (TNP-8N3-ADP), a high affinity photoactivatable analogue of ATP, can inhibit the K+-phosphatase activity of the FITC-modified enzyme during assays in dimmed light. The inhibition occurs with a Ki of 140 microM at 20 mM K+; it requires the adenine ring as 2'(3')-O-(2,4 6-trinitrophenyl) (TNP)-UDP or TNP-uridine are less potent and 2,4,6-trinitrobenzene-sulfonate is ineffective. Under irradiation with UV light, TNP-8N3-ADP inactivates the K+-phosphatase activity of the fluorescein-enzyme and also its phosphorylation by [32P]Pi. The photoinactivation process is stimulated by Na+ or Mg2+, and is inhibited by K+ or excess TNP-ADP. In the presence of 50 mM Na+ and 1 mM Mg2+, TNP-8N3-ADP photoinactivates with a K0.5 of 15 microM. Furthermore, TNP-8N3-ADP photoinactivates the FITC-modified, solubilized alpha beta protomers, even more effectively than the membrane-bound fluorescein-enzyme. These results strongly suggest that catalytic and allosteric ATP sites coexist on the alpha beta protomer of Na,K-ATPase.  相似文献   

13.
Mutagenesis of Glu820, present in the catalytic subunit of gastric H+,K+-ATPase, into an Asp hardly affects K+-stimulated ATPase and K+-stimulated dephosphorylation of the enzyme. The ATP phosphorylation rate of the E820D mutant, however, is rather low and the apparent affinity for ATP in the phosphorylation process of this mutant is 2-3 times lower than that of the wild type enzyme. The reduction in the ATP phosphorylation rate of the E820D mutant has only an effect on the ATPase activity at low temperature. These findings suggest that Glu820 might play a role in H+ stimulation of the phosphorylation process.  相似文献   

14.
Previous experiments from our laboratory (Codina, J., Kone, B. C., Delmas-Mata, J. T., and DuBose, T. D., Jr. (1996) J. Biol. Chem. 271, 29759-29763) demonstrated that the alpha-subunit of the colonic H+, K+-ATPase (HKalpha2) requires coexpression with a beta-subunit to support H+/K+ transport in a heterologous expression system (Xenopus laevis oocytes). In these studies, HKalpha2 formed stable and functional alpha.beta complexes when coexpressed with either the rat beta1-subunit of the Na+,K+-ATPase or the beta-subunit of the gastric H+,K+-ATPase, suggesting that different beta-subunits may interact with HKalpha2. The present studies tested this hypothesis by development and application of a specific antibody against HKalpha2 peptide. Subsequently, immunoprecipitation experiments were performed to determine if HKalpha2 co-precipitates with the same beta-subunit in organs known to express HKalpha2 protein. The data demonstrate that HKalpha2 assembles with beta1-Na+,K+-ATPase in the renal medulla and in distal colon.  相似文献   

15.
Dopamine inhibits Na+,K+-ATPase activity in renal tubule cells. This inhibition is associated with phosphorylation and internalization of the alpha subunit, both events being protein kinase C-dependent. Studies of purified preparations, fusion proteins with site-directed mutagenesis, and heterologous expression systems have identified two major protein kinase C phosphorylation residues (Ser-11 and Ser-18) in the rat alpha1 subunit isoform. To identify the phosphorylation site(s) that mediates endocytosis of the subunit in response to dopamine, we have performed site-directed mutagenesis of these residues in the rat alpha1 subunit and expressed the mutated forms in a renal epithelial cell line. Dopamine inhibited Na+,K+-ATPase activity and increased alpha subunit phosphorylation and clathrin-dependent endocytosis into endosomes in cells expressing the wild type alpha1 subunit or the S11A alpha1 mutant, and both effects were blocked by protein kinase C inhibition. In contrast, dopamine did not elicit any of these effects in cells expressing the S18A alpha1 mutant. While Ser-18 phosphorylation is necessary for endocytosis, it does not affect per se the enzymatic activity: preventing endocytosis with wortmannin or LY294009 blocked the inhibitory effect of dopamine on Na+,K+-ATPase activity, although it did not alter the increased alpha subunit phosphorylation induced by this agonist. We conclude that dopamine-induced inhibition of Na+, K+-ATPase activity in rat renal tubule cells requires endocytosis of the alpha subunit into defined intracellular compartments and that phosphorylation of Ser-18 is essential for this process.  相似文献   

16.
Fluorescein-5'-isothiocyanate (FITC) was used to study the high-affinity ATP-binding site of Na+/K+-ATPase. The molar ratio of specifically bound FITC per alpha-subunit of Na+/K+-ATPase was found to be 0.5 as followed from pretreatment experiments with another specific E1ATP-inhibitor Cr(H2O)4AdoPP[CH2]P. This indicated an existence of one high affinity ATP-binding site (E1ATP-binding site) in the native (alphabeta)2-diprotomer of Na+/K+-ATPase. Fluorescence dual-excitation ratio of specifically bound FITC revealed that at external pH 7.5, the pH value inside the E1ATP-binding site is 6.95 +/- 0.18. In addition, FITC fluorescence quenching by anti-fluorescein and by iodide choline indicated the limited access of water into the small pocket of the E1ATP-binding site.  相似文献   

17.
From epithelial layer of rat intestinal were selected water soluble substances which influenced on Na+,K(+)-ATPase activity in 2 different ways: substances with molecular weight 220 Da, 400 Da were its activators, substance with weight 150 Da-inhibitor. Na+,K(+)-ATPase activators preincubated previously with Na+ acquire properties of inhibitors. Bivalent cations Ca, Mg remove this effect of Na-ions.  相似文献   

18.
In the preceding publication (. Biophys. J. 76:000-000) a new technique was described that was able to produce concentration jumps of arbitrary ion species at the surface of a solid supported membrane (SSM). This technique can be used to investigate the kinetics of ion translocating proteins adsorbed to the SSM. Charge translocation of the Na+/K+-ATPase in the presence of ATP was investigated. Here we describe experiments carried out with membrane fragments containing Na+/K+-ATPase from pig kidney and in the absence of ATP. Electrical currents are measured after rapid addition of Na+. We demonstrate that these currents can be explained only by a cation binding process on the cytoplasmic side, most probably to the cytoplasmic cation binding site of the Na+/K+-ATPase. An electrogenic reaction of the protein was observed only with Na+, but not with other monovalent cations (K+, Li+, Rb+, Cs+). Using Na+ activation of the enzyme after preincubation with K+ we also investigated the K+-dependent half-cycle of the Na+/K+-ATPase. A rate constant for K+ translocation in the absence of ATP of 0.2-0.3 s-1 was determined. In addition, these experiments show that K+ deocclusion, and cytoplasmic K+ release are electroneutral.  相似文献   

19.
In the pancreatic beta-cell, glucose-induced membrane depolarization promotes opening of voltage-gated L-type Ca2+ channels, an increase in cytoplasmic free Ca2+ concentration ([Ca2+]i), and exocytosis of insulin. Inhibition of Na+,K+-ATPase activity by ouabain leads to beta-cell membrane depolarization and Ca2+ influx. Because glucose-induced beta-cell membrane depolarization cannot be attributed solely to closure of ATP-regulated K+ channels, we investigated whether glucose regulates other transport proteins, such as the Na+,K+-ATPase. Glucose inhibited Na+,K+-ATPase activity in single pancreatic islets and intact beta-cells. This effect was reversible and required glucose metabolism. The inhibitory action of glucose was blocked by pretreatment of the islets with a selective inhibitor of a Ca2+-independent phospholipase A2. Arachidonic acid, the hydrolytic product of this phospholipase A2, also inhibited Na+, K+-ATPase activity. This effect, like that of glucose, was blocked by nordihydroguaiaretic acid, a selective inhibitor of the lipooxygenase metabolic pathway, but not by inhibitors of the cyclooxygenase or cytochrome P450-monooxygenase pathways. The lipooxygenase product 12(S)-HETE (12-S-hydroxyeicosatetranoic acid) inhibited Na+,K+-ATPase activity, and this effect, as well as that of glucose, was blocked by bisindolylmaleimide, a specific protein kinase C inhibitor. Moreover, glucose increased the state of alpha-subunit phosphorylation by a protein kinase C-dependent process. These results demonstrate that glucose inhibits Na+, K+-ATPase activity in beta-cells by activating a distinct intracellular signaling network. Inhibition of Na+,K+-ATPase activity may thus be part of the mechanisms whereby glucose promotes membrane depolarization, an increase in [Ca2+]i, and thereby insulin secretion in the pancreatic beta-cell.  相似文献   

20.
1. Na+,K(+)-ATPase is the membrane enzyme catalysing the active transport of Na+ and K+ across the plasma membrane of animal cells. A reduced activity of Na+,K(+)-ATPase has been described in gestational hypertension in a variety of cell types, in agreement with the hypothesis that gestational hypertension can induce membrane transport modifications similar to those reported for essential hypertension. The causes of the reduced Na+,K(+)-ATPase activity are still debated. 2. The aim of the present work was to investigate the molecular mechanism of the reduced enzymic activity in gestational hypertension using as a model Na+,K(+)-ATPase purified from human placenta. Na+,K(+)-ATPase obtained from term placentas of eight healthy pregnant women and eight age-matched women with gestational hypertension was purified as previously described. 3. We observed in gestational hypertension: (i) a significant increase in the activation energies above transition temperature; (ii) a significant decrease in the fluorescence polarization of 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene (i.e. increased fluidity) and an increase in the mean lifetime (modified hydrophobicity); (iii) a lower Kq, suggesting an enzymic structural modification; and (iv) an increased mean lifetime and rotational relaxation time of pyrene isothiocyanate, indicating a modified ATP binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号