首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors--in contrast to p75NTR-associated signaling--stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

2.
Nerve growth factor (NGF) suppressed the decrease in number of viable PC12 cells after serum withdrawal from culture medium. Accordingly, the amount of bcl-2, a suppressive effector of apoptosis, increased in these cells. Bcl-2 antisense oligonucleotide suppressed not only the NGF-induced increase in bcl-2 but also NGF-induced neuronal differentiation. Results of fluorescent DNA staining indicated that NGF inhibited the chromatin condensation of PC12 cells resulting from serum withdrawal and further that the bcl-2 antisense oligonucleotide canceled this effect of NGF. The present results suggest that NGF rescues PC12 cells from apoptosis induced by serum withdrawal via up-regulation of bcl-2.  相似文献   

3.
The stress-activated protein kinases (SAPKs) are differentially activated by a variety of cellular stressors in PC12 cells. SAPK activation has been linked to the induction of apoptotic cell death upon serum withdrawal from undifferentiated cells or following nerve growth factor (NGF) withdrawal of neuronally differentiated PC12 cells. However, withdrawal of trophic support from differentiated cells led to only a very modest elevation of SAPK activity and led us to investigate the basis of the relative insensitivity of these enzymes to stressors. NGF-stimulated differentiation of the cells resulted in the elevation of basal SAPK activity to levels four- to sevenfold greater than in untreated cells, which was correlated with an approximate fivefold increase in SAPK protein levels. Paradoxically, in NGF-differentiated PC12 cells, exposure to cellular stressors provoked a proportionately smaller stimulation of SAPK activity than that observed in naive cells, despite the presence of much higher levels of SAPK protein. The insensitivity of SAPK to activation by stressors was reflective of the activity of the SAPK activator SEK, whose activation was also diminished following NGF differentiation of the cells. The data demonstrate that SAPKs are subject to complex controls through both induction of SAPK expression and the regulation mediated by upstream elements within this pathway.  相似文献   

4.
Rat pheochromocytoma PC12 cells differentiate into nonreplicating neuronal cells with neurite extensions in response to nerve growth factor (NGF). To gain better understanding of the regulation of stress responses in neuronal cells, we examined the induction of HSP70, HSP70 mRNA, and heat shock factor 1 (HSF1) DNA-binding activity following treatment by heat shock or with sodium arsenite or amino acid analogue in PC12 cells treated with or without NGF. The induction of HSP70 and HSP70 mRNA following these stresses was diminished in the differentiated PC12 cells compared to the undifferentiated cells, whereas the HSF1 DNA-binding activity was enhanced in the differentiated PC12 cells. This phenomenon was characteristic of the differentiated neuronal cells rather than growth-arrested cells. Thus, neuronal cells appear to show an altered stress response depending on their differentiation state, and the diminished HSP70 expression in the differentiated neuronal cells may explain the sensitivity of neuronal cells to pathophysiological stressors.  相似文献   

5.
Culture media from rat basophilic leukemia cells (RBL-2H3) induced the neurite outgrowth of rat pheochromocytoma PC12 cells, a model system for neuronal differentiation. The extension of the neurite outgrowth was dependent on the culture time of RBL-2H3 cells in the DMEM medium. The DMEM medium conditioned by RBL-2H3 cells for 48 h induced neurite outgrowth of PC12 cells significantly. The neurite extension was much higher than that by medium containing 1 ng/ml nerve growth factor (NGF) but was rather lower than that by medium containing 10 or 50 ng/ml NGF. The neurite extension by 50 ng/ml NGF was completely suppressed by excess anti-NGF antibody (1-1.5 microg/ml), while the extension by culture medium conditioned by RBL-2H3 cells for 48 h was not completely suppressed in the presence of the same amount of anti-NGF antibody. The neurite extension by the culture medium of RBL-2H3 cells was also suppressed by anti-interleukin (IL)-6 antibody (1 microg/ml), although IL-6 itself (20 units) could scarcely induce the neurite outgrowth of PC12 cells. This suggests that IL-6 in the culture medium of RBL-2H3 cells could be effective in inducing the neurite extension in cooperation with NGF. In the presence of an excess of both anti-NGF and anti-IL-6 antibodies, the culture medium of RBL-2H3 cells induced the neurite extension of PC12 cells. This suggests that the action of the various factors from RBL-2H3 cells may be synergistic as far as the neurite outgrowth of PC12 cells is concerned.  相似文献   

6.
We have investigated the role of the low-affinity nerve growth factor (NGF) receptor p75NGFR in determining the death of neuronally differentiated PC12 cells after withdrawal of NGF. A range of high and low p75NGFR-expressing cells were obtained by a combination of fluorescence activated cell sorting (FACS) and stable transfection with a p75NGFR expression vector. Cells were readily differentiated to a neuronal phenotype irrespective of the level of p75NGFR expression. However, the rate and extent of neuronal death following NGF deprivation were extremely sensitive to the level of p75NGFR expression. The highest expressing cells died most rapidly. Cells selected for very low levels of p75NGFR expression exhibited resistance to NGF withdrawal, and remained as viable, differentiated neurons, with minimal cell death, for at least 5 days in the absence of NGF. Antisense oligonucleotides against p75NGFR were shown to down-regulate p75NGFR in PC12 cells and, further, to significantly enhance survival in the absence of NGF. These results consolidate and generalize our previous findings that p75NGFR induces cell death in postnatal sensory neurons in the absence of NGF. The ability to induce cell death in the absence of NGF appears to be a more general role of p75NGFR in differentiated neurons, and an important new paradigm for the mechanism of NGF-dependent survival.  相似文献   

7.
Neuronally differentiated PC12 cells undergo synchronous apoptosis when deprived of nerve growth factor (NGF). Here we show that NGF withdrawal induces actinomycin D- and cycloheximide-sensitive caspase (ICE-like) activity. The peptide inhibitor of caspase activity, N-acetyl-Asp-Glu-Val-Asp-aldehyde, was more potent than acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone in preventing NGF withdrawal-induced apoptosis, suggesting an important role for caspase-3 (CPP32)-like proteases. We observed a peak of reactive oxygen species (ROS) 6 h after NGF withdrawal. ROS appear to be required for apoptosis, because cell death is prevented by the free radical spin trap, N-tert-butyl-alpha-phenylnitrone, and the antioxidant, N-acetylcysteine. ROS production was blocked by actinomycin D, cycloheximide, and caspase protease inhibitors, suggesting that ROS generation is downstream of new mRNA and protein synthesis and activation of caspases. Forced expression of either BCL-2 or the BCL-2-binding protein BAG-1 blocked NGF withdrawal-induced apoptosis, activation of caspases, and ROS generation, showing that they function upstream of caspases. Coexpression of BCL-2 and BAG-1 was more protective than expression of either protein alone.  相似文献   

8.
9.
Adrenocorticotropin hormone (ACTH) and adrenal steroids may influence trophic processes operative in neuronal plasticity. Because nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) participate in neuronal trophism, we have investigated whether adrenal steroids induce the expression of these two trophic factors in the rat brain. The systemic administration of dexamethasone (DEX) elicited a rapid (within 3 hr) and sustained accumulation of bFGF and NGF mRNA in the cerebral cortex and hippocampus. Regional studies showed that DEX increases bFGF but not NGF mRNA in the cerebellum, striatum, and hypothalamus. In situ hybridization studies revealed that DEX increases NGF mRNA in superficial layers of the cerebral cortex and in the dentate gyrus of the hippocampus, and bFGF mRNA throughout the brain, suggesting that DEX induces NGF mRNA in neurons and bFGF in glial cells. ACTH administered systemically elicited a temporal and regional induction in NGF and bFGF mRNA similar to that obtained with DEX. Increases in NGF and bFGF mRNAs were also observed after administration of corticosterone and, albeit to a lesser extent, aldosterone, suggesting that the pituitary-adrenocortical axis plays an important role in the regulation of NGF and bFGF expression in the brain. Our data suggest that NGF and bFGF represent a link by which the adrenal cortical system can exert trophic action on the CNS.  相似文献   

10.
This work has explored the relationship between excitotoxicity and the amyloid precursor protein gene (APP) which may be relevant to future therapeutic developments in Alzheimer's disease. The excitotoxic effects of kainic acid (KA) and pentylenetetrazole (PTZ) have been compared and contrasted on the two major mRNA isoforms of APP using in situ hybridization and quantitative analysis of gene expression in rat brain. The Kunitz Protease Inhibitor containing isoform APP 770 KPI+, the major glial cell isoform, has been shown to be stimulated after KA and was related to neuronal loss and astrocyte activation as gauged by GFAP mRNA. This was associated with reduced expression of APP695 KPI- isoform, the major neuronal isoform. These changes were not observed after PTZ where there was no neuronal loss and no glial reaction. The KA induced changes in APP were prevented by pretreatment with the non-competitive NMDA receptor antagonist dizocilpine and the barbiturate pentobarbitone, but not with the kappa-opioid receptor agonist enadoline. These findings were related to the suppression of seizures and the survival of neurons. In conclusion, excitotoxic stimulation leading to neuronal death was associated with increased expression of APP KPI+ mRNA and decreased APP KPI- mRNA, a finding which may relate to the plasticity of the central nervous system.  相似文献   

11.
Nerve growth factor (NGF) is a member of the neurotrophin family and is required for the survival and maintenance of peripheral sympathetic and sensory ganglia. In the CNS, NGF regulates cholinergic expression by basal forebrain cholinergic neurons. NGF also stimulates cellular resistance to oxidative stress in the PC12 cell line and protects PC12 cells from the toxic effects of reactive oxygen species. The hypothesis that NGF protection involves changes in antioxidant enzyme expression was tested by measuring its effects on catalase and glutathione peroxidase (GSH Px) mRNA expression in PC12 cells. NGF increased catalase and GSH Px mRNA levels in PC12 cells in a time- and dose-dependent manner. There was also a corresponding increase in the enzyme activities of catalase and GSH Px. Thus, NGF can provide cytoprotection to PC12 cells by inducing the free radical scavenging enzymes catalase and GSH Px.  相似文献   

12.
We compared the time-dependent changes in messenger ribonucleic acid (mRNA) levels for two neurotrophic factors after amygdala-kindled seizures and hippocampal long-term potentiation (LTP) in rats in vivo. The brain-derived neurotrophic factor (BDNF) mRNA levels in the bilateral granule cell layer of the dentate gyrus, increased significantly 1-4 h after stage 5 kindled seizures. Nerve growth factor (NGF) mRNA levels increased throughout the bilateral limbic regions more gradually than those of BDNF mRNA. The maximum levels in the dentate gyrus ipsilateral to stimulation (BDNF mRNA: 493%, NGF mRNA: 199% of control levels) occurred 2 h after seizures. As observed with kindling, BDNF and NGF mRNA expression increased in the dentate gyrus ipsilateral to stimulation also increased following LTP induced by the perforant path stimulation, with maximum levels occurring 2 h and 4 h, respectively, after stimulation, when they reached 284% and 189% of the control levels, respectively. These results suggest that BDNF and NGF are involved in enhancement of synaptic efficacy in the granule cells of the dentate gyrus in the hippocampus in kindling, not related to the neuronal excitability associated with seizure activity.  相似文献   

13.
14.
In the accompanying paper (Zaidi, S. H. E., Denman, R., and Malter, J. S. (1994) J. Biol. Chem. 269, 24000-24006) we demonstrate that in tumor and normal cells, multiple cytosolic proteins interact with a 29-base sequence in the 3'-untranslated region of amyloid precursor protein (APP) mRNA. These data suggested that APP gene expression may be modulated by regulated APP mRNA decay. We have investigated this prediction by measuring the decay rates of APP mRNA in resting and mitogen-treated peripheral blood mononuclear cells and H4 and K562 tumor cell lines. In resting peripheral blood mononuclear cells, APP mRNA decayed with a half-life of 4 h. Under these conditions, the activity of APP mRNA-binding proteins was not detectable. After activation, binding protein activities were induced, and APP mRNA decay was blocked with a half-life of > 12 h. In log phase neuronal or lymphoid tumor cell lines, binding activity was constitutively present and APP mRNA displayed a half-life of > 12 h. Protein synthesis inhibition by cycloheximide had no effect on APP mRNA decay in normal or tumor cells. Transfected wild type or mutant APP mRNAs that lacked the 29-base region were stable (t1/2 > 10 h) in K562 tumor cells. Therefore, we conclude that the 29-base region functions in cis to destabilize APP mRNA in resting, normal cells. Upon activation APP mRNA-binding proteins are induced, interact with the 29-base region, and likely participate in stabilization of the mRNA.  相似文献   

15.
Surprisingly, we observed that nerve growth factor (NGF) potentiated death of PC12 cells induced by glucose withdrawal, although NGF is widely believed to exert its protective role against several types of cell death. Since either glucose withdrawal or NGF treatment increases intracellular calcium levels of target cells in many cases, we hypothesized that further increase of intracellular calcium by NGF may be a determinant factor in the NGF-mediated cell death. To test this hypothesis, we examined the effect of NGF on cell death pharmacologically by measuring cell viability and traced the changes of intracellular calcium in various conditions using a confocal laser microscope. NGF promoted cell death under a glucose-deprived condition in a manner dependent on extracellular calcium, and nifedipine, but not ryanodine, could partially block the cell death. NGF treatment augmented further intracellular calcium that had been elevated by glucose withdrawal, the event that nifedipine could block. In this study, therefore, we tentatively concluded that NGF potentiates cell death of starved PC12 cells by accelerating the initial increase of intracellular calcium through activation of a dihydropyridine-sensitive calcium channel.  相似文献   

16.
To address the question whether calretinin (CR) may protect cells against Ca2+ overload or trophic factor deprivation, PC12 cells were transfected with plasmids containing a CR coding region under control of a cytomegalovirus promoter. Nerve growth factor (NGF) treatment induced differentiation, increased transfection efficiency (at least 10-fold) and activated the CR gene (as found by RNase protection method and immunohistochemistry). Exogenous CR expression was identified either in living cells by fluorescence of green fluorescent protein (when the CR coding region was fused to this protein) or in fixed cells by CR immunoreactivity. Undifferentiated and NGF-differentiated populations of transfected cells were incubated in the presence of a Ca(2+)-ionophore or in media deprived of serum or NGF. Expression of exogenous CR in undifferentiated or NGF-treated cells (due to transfection) or endogenous CR (due to gene activation by NGF) did not render PC12 cells more resistant to insults such as Ca(2+)-overload and trophic factor deprivation.  相似文献   

17.
Caveolae are cholesterol/sphingolipid-rich microdomains of the plasma membrane that have been implicated in signal transduction and vesicular trafficking. Caveolins are a family of caveolae-associated integral membrane proteins. Caveolin-1 and -2 show the widest range of expression, whereas caveolin-3 expression is restricted to muscle cell types. It has been previously reported that little or no caveolin mRNA species are detectable in the brain by Northern blot analyses or in neuroblastoma cell lines. However, it remains unknown whether caveolins are expressed within neuronal cells. Here we demonstrate the expression of caveolin-1 and -2 in differentiating PC12 cells and dorsal root ganglion (DRG) neurons by using mono-specific antibody probes. In PC12 cells, caveolin-1 expression is up-regulated on day 4 of nerve growth factor (NGF) treatment, whereas caveolin-2 expression is transiently up-regulated early in the differentiation program and then rapidly down-regulated. Interestingly, caveolin-2 is up-regulated in response to the mechanical injury of differentiated PC12 cells; up-regulation of caveolin-2 under these conditions is strictly dependent on continued treatment with NGF. Robust expression of caveolin-1 and -2 is also observed along the entire cell surface of DRG neurons, including high levels on growth cones. These findings demonstrate that neuronal cells express caveolins.  相似文献   

18.
We have characterized some of the nerve growth factor (NGF) stimulated receptor tyrosine kinase (TrkA) signalling cascades in adult rat primary dorsal root ganglia (DRG) neuronal cultures and compared the pathways with those found in PC12 cells. TrkA receptors were phosphorylated on tyrosine residues in response to NGF in DRG neuronal cultures. We also saw phosphorylation of phospholipase Cgamma1 (PLCgamma1). We used recombinant glutathione-S-transferase (GST)-PLCgamma1 SH2 domain fusion proteins to study the site of interaction of TrkA receptors with PLCgamma1. TrkA receptors derived from DRG neuronal cultures bound preferentially to the amino terminal Src homology-2 (SH2) domain of PLCgamma1, but there was enhanced binding with tandemly expressed amino- and carboxy-terminal SH2 domains. The most significant difference in NGF signalling between PC12 cells and DRG was with the Shc family of adapter proteins. Both ShcA and ShcC were expressed in DRG neurons but only ShcA was detected in PC12 cells. Different isoforms of ShcA were phosphorylated in response to NGF in DRG and PC12 cells. NGF phosphorylated only one whereas epidermal growth factor phosphorylated both isoforms of ShcC in DRG cultures. Activation of the downstream mitogen-activated protein (MAP) kinase, p42Erk2 was significantly greater than p44Erk1 in DRG whereas both isoforms were activated in PC12 cells. Blocking the MAP kinase cascade using a MEK1/2 inhibitor, PD98059, abrogated NGF dependent capsaicin sensitivity, a nociceptive property specific to sensory neurons.  相似文献   

19.
Angiotensin AT2 receptors have been shown to play a role in cell differentiation characterized by neurite outgrowth in neuronal cells of different origin. To further investigate AT2 receptor-mediated events leading to neurite formation, we examined the effect of AT2 receptor stimulation on the microtubule components, beta-tubulin, MAP1B and MAP2, by Western blot analysis and immunofluorescence in quiescent and nerve growth factor (NGF)-differentiated PC12W cells. These proteins are involved in neurite extension and neuronal maturation. Whereas NGF (0.5, 10, and 50 ng/ml) up-regulated these proteins after 3 days of stimulation, angiotensin II (ANG II; 10(-7) M) induced a different pattern. In quiescent PC12W cells, AT2 receptor stimulation up-regulated polymerized beta-tubulin and MAP2 but down-regulated MAP1B protein levels. In PC12W cells, differentiated by NGF (0.5 ng/ml), ANG II elevated polymerized beta-tubulin and reduced MAP1B. All ANG II effects were abolished by the AT2 receptor antagonist PD123177 (10(-5) M) but not affected by the AT1 receptor antagonist losartan (10(-5) M). These results implicate a specific role of AT2 receptors in cell differentiation and nerve regeneration via regulation of the cytoskeleton.  相似文献   

20.
We examined the protective effect of nicotine against neuronal cell death in the model system of serum- and nerve growth factor (NGF)-free cultures of PC12 cells. Serum deprivation induced massive death of undifferentiated PC12 cells, which was inhibited by the addition of NGF, but not by the addition nicotine (100 microM). Even after PC12 cells had been differentiated by the treatment with NGF, serum and NGF deprivation induced rapid and massive death of these cells. The addition of nicotine (1-100 microM) to the deprivation system prevented such cell death almost completely. The protective effect of nicotine was abolished by hexamethonium or mecamylamine, inhibitors of nicotinic acetylcholine (nACh) receptors. Treatment with reserpine to deplete intracellular catecholamines did not influence the effect. The results suggest that the protective effect of nicotine against neuronal cell death is exerted through nACh receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号