首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the comethanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and highresolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.
  相似文献   

2.
A series of Zr-doped ordered mesoporous Al2O3 with various Zr contents were synthesized by evaporation-induced self-assembly strategy and the Ni-based catalysts supported on these Al2O3 materials were prepared by impregnation method. These catalysts with large specific surface area, big pore volume, uniform pore size possess excellent catalytic performance for the low-temperature carbon dioxide reforming of methane. The activities of these catalysts were tested in carbon dioxide reforming of methane reaction with temperature increasing from 500 to 650?°C and the stabilities of these catalysts were evaluated for long time reaction at 650?°C. It was found that when Zr/(Zr?+?Al) molar ratio?=?0.5%, the Ni/0.5ZrO2–Al2O3 catalyst showed the highest activity, and exhibited superior stabilization compared to the Ni-based catalyst supported on traditional ordered mesoporous Al2O3. The “confinement effect” from mesoporous channels of alumina matrix is helpful to stabilize the Ni nanoparticles. As a promoter, Zr could stabilize the ordered mesoporous framework by reacting with Al2O3 to form ZrO2–Al2O3 solid solution. Since ZrO2 enhances the dissociation of carbon dioxide, more oxygen intermediates are given to remove the carbon formed during the reaction.  相似文献   

3.
Ni/SiC and Ni/SiO2 catalysts prepared by both wet impregnation (WI) and deposition–precipitation (DP) methods were compared for CO and CO2 methanation. The prepared catalysts were characterized using N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), H2 chemisorption, pulsed CO2 chemisorption, temperature-programmed desorption of CO2 (CO2-TPD), transmission electron microscopy, and X-ray diffraction. H2-TPR analysis revealed that the catalysts prepared by DP exhibit stronger interaction between the nickel oxides and support than those prepared by WI. The former catalysts exhibit higher Ni dispersions than the latter. The catalytic activities for both reactions over Ni/SiC and Ni/SiO2 catalysts prepared by WI increase on increasing the Ni content from 10 to 20 wt%. The Ni/SiC catalyst prepared by DP shows higher catalytic activity for CO and CO2 methanation than that of the Ni/SiC catalyst prepared by WI. Furthermore, it exhibits the highest catalytic activity for CO methanation among the tested catalysts. The high Ni dispersion achieved by the DP method and the high thermal conductivity enabled by SiC are beneficial for both CO and CO2 methanation.  相似文献   

4.
A series of Al2O3 and CeO2 modified MgO sorbents was prepared and studied for CO2 sorption at moderate temperatures. The CO2 sorption capacity of MgO was enhanced with the addition of either Al2O3 or CeO2. Over Al2O3-MgO sorbents, the best capacity of 24.6 mg- CO2/g-sorbent was attained at 100 °C, which was 61% higher than that of MgO (15.3 mg-CO2/g-sorbent). The highest capacity of 35.3 mg-CO2/g-sorbent was obtained over the CeO2-MgO sorbents at the optimal temperature of 200 °C. Combining with the characterization results, we conclude that the promotion effect on CO2 sorption with the addition of Al2O3 and CeO2 can be attributed to the increased surface area with reduced MgO crystallite size. Moreover, the addition of CeO2 increased the basicity of MgO phase, resulting in more increase in the CO2 capacity than Al2O3 promoter. Both the Al2O3-MgO and CeO2-MgO sorbents exhibited better cyclic stability than MgO over the course of fifteen CO2 sorption-desorption cycles. Compared to Al2O3, CeO2 is more effective for promoting the CO2 capacity of MgO. To enhance the CO2 capacity of MgO sorbent, increasing the basicity is more effective than the increase in the surface area.
  相似文献   

5.
A co-precipitation method was employed to prepare Ni/Al2O3-ZrO2, Co/Al2 O3-ZrO2 and Ni-Co/Al2O3-ZrO2 catalysts. Their properties were characterized by N2 adsorption (BET), thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), temperature-programmed desorption (CO2-TPD), and temperature-programmed surface reaction (CH4-TPSR and CO2-TPSR). Ni-Co/Al2O3-ZrO2 bimetallic catalyst has good performance in the reduction of active components Ni, Co and CO2 adsorption. Compared with mono-metallic catalyst, bimetallic catalyst could provide more active sites and CO2 adsorption sites (C + CO2 = 2CO) for the methane-reforming reaction, and a more appropriate force formed between active components and composite support (SMSI) for the catalytic reaction. According to the CH4-CO2-TPSR, there were 80.9% and 81.5% higher CH4 and CO2 conversion over Ni-Co/Al2O3-ZrO2 catalyst, and its better resistance to carbon deposition, less than 0.5% of coke after 4 h reaction, was found by TGA. The high activity and excellent anti-coking of the Ni-Co/Al2O3-ZrO2 catalyst were closely related to the synergy between Ni and Co active metal, the strong metal-support interaction and the use of composite support.  相似文献   

6.
The effect of alumina crystalline phases on CO and CO2 methanation was investigated using alumina-supported Ni catalysts. Various crystalline phases, such as α-Al2O3, θ-Al2O3, δ-Al2O3, η-Al2O3, γ-Al2O3, and κ-Al2O3, were utilized to prepare alumina-supported Ni catalysts via wet impregnation. N2 physisorption, H2 chemisorption, temperature-programmed reduction with H2, CO2 chemisorption, temperature-programmed desorption of CO2, and X-ray diffraction were employed to characterize the catalysts. The Ni/θ-Al2O3 catalyst showed the highest activity during both CO and CO2 methanation at low temperatures. CO methanation catalytic activity appeared to be related to the number of Ni surface-active sites, as determined by H2-chemisorption. During CO2 methanation, Ni dispersion and the CO2 adsorption site were found to influence catalytic activity. Selective CO methanation in the presence of excess CO2 was performed over Ni/γ-Al2O3 and Ni/δ-Al2O3; these substrates proved more active for CO methanation than for CO2 methanation.  相似文献   

7.
Zinc oxide and graphene support as catalyst were synthesized and characterized using different techniques. Results showed that graphene presented thermal stability, and maintained its structure under heat treatment at temperatures of 500 °C. TPD He experiments showed decomposition of residual compounds, releasing oxygenated compounds after functionalization of the graphene oxide. The catalyst performance was evaluated for the reaction of CH4?+?CO2 and O2 by surface reaction at programmed temperature. We observed the formation of CO, H2 and H2O. However, TPSR and DRIFTS coupled to a mass spectrometer evidenced methane activation on ZnO/rGO-T, due to the evolution of H2 and CO2 traces of water and hydrocarbons, such as ethane (C2H6). Less sensitive but present was the signal 60, which can be assigned to the formation of acetic acid (CH3COOH) at 300 °C.

Graphical Abstract

  相似文献   

8.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

9.
We investigated the influence of the calcination temperature on the structural properties of Al2O3 and how the resultant Al2O3 support affects the characteristics of Pd/Al2O3 catalysts. Al2O3 pretreated at different calcination temperatures ranging from 500 °C to 1,150 °C, was used as catalyst supports. The Pd/Al2O3 catalysts were prepared by a deposition-precipitation method using a pH 7.5 precursor solution. Characterization of the prepared Pd/Al2O3 catalysts was performed by X-ray diffraction (XRD), N2-physisorption, CO2-temperature programmed desorption (TPD), CO-chemisorption, and field emission-transmission electron microscopic (FE-TEM) analyses. The CO-chemisorption results showed that the Pd catalyst with the Al2O3 support calcined at 900 °C, Pd/Al2O3 (900), had the highest and most uniformly dispersed Pd particles, with a Pd dispersion of 29.8%. The results suggest that the particle size and distribution of Pd are related to the phase transition of Al2O3 and the ratio of isolated tetrahedral to condensed octahedral coordination sites (i.e., functional groups), where the tetrahedral sites coordinate more favorably with Pd.  相似文献   

10.
Catalytic conversion of CO2 to methanol is gaining attention as a promising route to using carbon dioxide as a new carbon feedstock. AlOOH supported copper-based methanol synthesis catalyst was investigated for direct hydrogenation of CO2 to methanol. The bare AlOOH catalyst support was found to have increased adsorption capacity of CO2 compared to conventional Al2O3 support by CO2 temperature-programmed desorption (TPD) and FT-IR analysis. The catalytic activity measurement was carried out in a fixed bed reactor at 523 K, 30 atm and GHSV 6,000 hr?1 with the feed gas of CO2/H2 ratio of 1/3. The surface basicity of the AlOOH supported Cu-based catalysts increased linearly according to the amount of AlOOH. The optimum catalyst composition was found to be Cu : Zn : Al=40 : 30 : 30 at%. A decrease of methanol productivity was observed by further increasing the amount of AlOOH due to the limitation of hydrogenation rate on Cu sites. The AlOOH supported catalyst with optimum catalyst compositions was slightly more active than the conventional Al2O3 supported Cu-based catalyst.  相似文献   

11.
Herein, we studied the influence of calcination temperature (500–800 °C) of Ni/CeO2 and Ni/Ce0.8Zr0.2O2 catalysts on the specific surface area, pore volume, crystalline size, lattice parameter, chemical bonding and oxidation states, nickel dispersion and CH4/CO production rate in CO2 methanation. In general, the catalytic performance revealed that Zr doping catalysts could increase the CH4 production rate. Combined with the production rate and the characterizations results, we found that the combination of nickel dispersion, peak area of CO2–TPD and OII/(OII + OI)) play the critical role in increasing the CH4 production rate. It is well to be mentioned that the CO production rate is strongly influenced by the nickel dispersion. Furthermore, the in-situ DRIFTS confirmed that the CO originates from the decomposition of H-assisted formate species.  相似文献   

12.
In this paper, a novel multifunctional superamphiphobic coating for anticorrosion was successfully prepared on aluminum substrate via a simple spraying technique. Al2O3 nanoparticles were chemically grafted onto montmorillonite (MMT) nanosheets via coupling effect of NH2-C3H6-Si(OC2H5)3 (KH-550) and then modified by low surface energy material polydimethylsiloxane (PDMS). The ethylene tetrafluoroethylene (ETFE) composite coating with 25 wt% MMT/Al2O3-PDMS binary nanocomposite exhibited well-designed nano/μ structures and possessed superamphiphobicity with high contact angles towards water (164°), glycerol (158°) and ethylene glycol (155°). This coating demonstrated outstanding self-cleaning ability and strong adhesive ability (Grade 1 according to the GB/T 9286). The superhydrophobicity could be maintained after 8000 times abrasion or annealing treatment for 2 h under 350 °C. The coating still retained high water-repellence after immersion in 1 mol/L HCl (146°), 1 mol/L NaOH (144°) and 3.5 wt% NaCl (151°) solutions for 30 d. It should be noted that this superamphiphobic coating revealed excellent long-term corrosion protection with extremely low corrosion rate (4.3 × 10?3 μm/year) and high protection performance (99.999%) after 30 d immersion in 3.5 wt% NaCl solutions based on electrochemical corrosion measurements. It is believed that such integrated functional coating could pave new way for self-cleaning and anticorrosion applications under corrosive/abrasive environment.  相似文献   

13.
Selective methanation of CO in the reformate gas (CO/CO2/H2/H2O = 0.175/17.9/70.9/11.1) proceeded over Ru catalysts supported on metal oxides and zeolites. CO was selectively methanated at wide temperature ranges (200–275 °C) over Ru/γ-Al2O3, Ru/TiO2 Ru/H-Y and Ru/H-beta catalysts. Higher Ru contents in Ru/γ-Al2O3 improved the selective CO methanation rate.  相似文献   

14.
A K-promoted 10Ni-(x)K/MgAl2O4 catalyst was investigated for the combined H2O and CO2 reforming (CSCR) of coke oven gas (COG) for syngas production. The 10Ni-(x)K/MgAl2O4 catalyst was prepared by co-impregnation, and the K content was varied from 0 to 5 wt%. The BET, XRD, H2-chemisorption, H2-TPR, and CO2-TPD were performed for determining the physicochemical properties of prepared catalysts. Except under the condition of a K/Ni=0.1 (wt%/wt%), the Ni crystal size and dispersion decreased with increasing K/Ni. The coke resistance of the catalyst was investigated under conditions of CH4: CO2: H2: CO:N2=1 : 1 : 2 : 0.3 : 0.3, 800 °C, 5 atm. The coke formation on the used catalyst was examined by SEM and TG analysis. As compared to the 10Ni/MgAl2O4 catalyst, the Kpromoted catalyst exhibited superior activity and coke resistance, attributed to its strong interaction with Ni and support, and the improved CO2 adsorption characteristic. The 10Ni-1K/MgAl2O4 catalyst exhibited optimum activity and coke resistance with only 1wt% of K.  相似文献   

15.
In the present study, we synthesized biodiesel from soybean oil through a transesterification reaction catalyzed by lithium carbonate. Under the optimal reaction conditions of methanol/oil molar ratio 32:1, 12 % (wt/wt oil) catalyst amount, and a reaction temperature of 65 °C for 2 h, there was a 97.2 % conversion to biodiesel from soybean oil. The present study also evaluated the effects of methanol/oil ratio, catalyst amount, and reaction time on conversion. The catalytic activity of solid base catalysts was insensitive to exposure to air prior to use in the transesterification reaction. Results from ICP-OES exhibited non-significant leaching of the Li2CO3 active species into the reaction medium, and reusability of the catalyst was tested successfully in ten subsequent cycles. Free fatty acid in the feedstock for biodiesel production should not be higher than 0.12 % to afford a product that passes the EN biodiesel standard. Product quality, ester content, free glycerol, total glycerol, density, flash point, sulfur content, kinematic viscosity, copper corrosion, cetane number, iodine value, and acid value fulfilled ASTM and EN standards. Commercially available Li2CO3 is suitable for direct use in biodiesel production without further drying or thermal pretreatment, avoiding the usual solid catalyst need for activation at high temperature.  相似文献   

16.
Amine-modified SiO2 aerogel was prepared using 3-(aminopropyl)triethoxysilane (APTES) as the modification agent and rice husk ash as silicon source, its CO2 adsorption performance was investigated. The amine-modified SiO2 aerogel remains porous, the specific surface area is 654.24 m2/g, the pore volume is 2.72 cm3/g and the pore diameter is 12.38 nm. The amine-modified aerogel, whose N content is up to 3.02 mmol/g, can stay stable below the temperature of 300 °C. In the static adsorption experiment, amine-modified SiO2 aerogel (AMSA) showed the highest CO2 adsorption capacity of 52.40 cm3/g. A simulation was promoted to distinguish the adsorption between the physical process and chemical process. It is observed that the chemical adsorption mainly occurs at the beginning, while the physical adsorption affects the entire adsorption process. Meanwhile, AMSA also exhibits excellent CO2 adsorption–desorption performance. The CO2 adsorption capacity dropped less than 10 % after ten times of adsorption–desorption cycles. As a result, AMSA with rice husk ash as raw material is a promising CO2 sorbent with high adsorption capacity and stable recycle performance and will have a broad application prospect for exhaust emission in higher temperature.  相似文献   

17.
Supported nickel oxide based catalysts were prepared by wetness impregnation method for the in-situ reactions of H2S desulfurization and CO2 methanation from ambient temperature up to 300 °C. Fe/Co/Ni (10:30:60)–Al2O3 and Pr/Co/Ni (5:35:60)–Al2O3 catalysts were revealed as the most potential catalysts, which yielded 2.9% and 6.1% of CH4 at reaction temperature of 300 °C, respectively. From XPS, Ni2O3 and Fe3O4 were suggested as the surface active components on the Fe/Co/Ni (10:30:60)–Al2O3 catalyst, while Ni2O3 and Co3O4 on the Pr/Co/Ni (5:35:60)–Al2O3 catalyst.  相似文献   

18.
In order to investigate the reasons the activation of a Ru/Al2O3 catalyst by heating in a H2/N2 mixed gas improves the CO preferential oxidation (PROX) activity, the oxidation state of the Ru on the catalyst surface was studied by using ESCA. As the ratio of Ru(0) to total Ru on the surface was increased, the temperature window of the Ru catalyst, where CO was reduced to below 10 ppm, was expanded to the lower temperature side. The activity of CO oxidation by O2 of the Ru catalyst at lower temperatures was improved by increasing the ratio of Ru(0). However, the selectivity for CO oxidation hardly varied with the change in the surface Ru(0) ratio at these low temperatures. It is considered that O2 activation on Ru(0) plays an essential role in CO PROX activity on the Ru catalyst at low temperatures.  相似文献   

19.
The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.  相似文献   

20.
Cu/ZnO/Al2O3 catalysts with Cu/Zn/Al ratios of 6/3/1 were precipitated and aged by conventional and microwave heating methods and tested in the slurry phase reactor for methanol synthesis. The effect of technological condition of precipitation and aging process under microwave irradiation on the catalytic performance was investigated to optimize the preparing condition of Cu/ZnO/Al2O3 catalyst. The results showed that the microwave irradiation during precipitation process could improve the activity of the catalyst, but had little effect on the stability. While the microwave irradiation during aging process has a great benefit to both the activity and stability of the catalyst, the catalyst aged at 80°C for 1 h under microwave irradiation possessed higher methanol space time yield (STY) and more stable catalytic activity. The activity and stability of the catalyst was further enhanced when microwave irradiation was used in both precipitation and aging processes; the optimized condition for the catalyst precursor preparation was precipitation at 60°C and aging at 80°C under microwave irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号