首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tribological behavior of rice husk (RH) ceramics, a hard, porous carbon material made from rice husk, sliding against stainless steel, alumina, silicon carbide, and silicon nitride (Si3N4) under dry conditions was investigated. High hardness of RH ceramics was obtained from the polymorphic crystallinity of silica. The friction coefficients for RH ceramics disks sliding against Si3N4 balls were extremely low (<0.1), irrespective of contact pressure or sliding velocity. Transfer films from RH ceramics formed on Si3N4 balls. Wear-mode maps indicated that the wear modes were powder formation under all tested conditions, resulting in low specific wear rates (<5×10−9 mm2/N).  相似文献   

2.
The triboemission behaviour of negatively and positively charged particles and photons generated by scratching a Si3N4 disc with a conical diamond stylus was studied under various gas pressures of n-butane as a model compound of typical paraffinic lubricating oil. The triboemission behaviour of photon emission in a frictional system of an Al2O3 ball sliding on Al2O3 and Si3N4 discs was also measured under various n-butane gas pressures. Further, the friction and wear in the frictional system of an Al2O3 ball sliding on an Si3N4 disc were studied under various n-butane gas pressures. The triboemission intensities of three kinds of energetic particles, negatively and positively charged particles and photons, become a maximum at a particular n-butane gas pressure. When the n-butane gas pressure is such that triboemission is a maximum, the formation of friction polymer-like high molecular weight products is at a maximum, and friction and wear of the ball decreases to a minimum. It has been concluded that the friction polymer-like high molecular weight products are formed through tribochemical reactions triggered by triboemission phenomena and help reduce the friction and wear of the solids.  相似文献   

3.
Dry friction and wear tests were performed with self-mated couples of SiC containing 50% TiC, Si3N4---BN, SiC---TiB2 and Si3N4 with 32% TiN at room temperature and 400°C or 800°C.Under room temperature conditions, the friction coefficient of the couple SiC---TiC/SiC---TiC is only half of that of the couple SiC/SiC and the wear is one order of magnitude smaller. At 400°C, it exceeds the friction coefficient of SiC/SiC except at the highest sliding velocity of 3 m s−1. At lower sliding velocities the wear coefficient of SiC---TiC/SiC---TiC is lower than that of SiC/SiC.The couple Si3N4---TiN/Si3N4---TiN exhibits high friction coefficients under all test conditions. At room temperature the wear volume of the self-mated couples of Si3N4 and Si3N4---TiN after a sliding distance of 1000 m is similar, but Si3N4---TiN shows a running-in behaviour. At 800°C the wear coefficient of Si3N4---TiN/Si3N4---TiN is approximately two orders of magnitude smaller than that of Si3N4/Si3N4, and equal to those at room temperature. At 22°C the addition of BN reduces the friction of Si3N4. The wear coefficient is independent of sliding velocity and the self-mated couples showing running-in. Friction and wear increase with increasing temperature. The wear coefficient of SiC---TiB2 above 0.5 m s−1 at 400°C is advantageously near 10−6 mm3 (Nm)−1. With the other test conditions the wear behaviour is similar to SSiC.  相似文献   

4.
The formation of nanoscopic ripple patterns on top of material surfaces has been reported for different materials and processes, such as sliding against polymers, high-force scanning in atomic force microscopy (AFM), and surface treatment by ion beam sputtering. In this work, we show that such periodic ripples can also be obtained in prolonged reciprocating sliding against nanocrystalline diamond (NCD) films. NCD films with a thickness of 0.8 µm were grown on top of silicon wafer substrates by hot-filament chemical vapor deposition using a mixture of methane and hydrogen. The chemical structure, surface morphology, and surface wear were characterized by Raman spectroscopy, scanning electron microscopy (SEM), and AFM. The tribological properties of the NCD films were evaluated by reciprocating sliding tests against Al2O3, Si3N4, and ZrO2 counter balls. Independent of the counter body material, clear ripple patterns with typical heights of about 30 nm induced during the sliding test are observed by means of AFM and SEM on the NCD wear scar surfaces. Although the underlying mechanisms of ripple formation are not yet fully understood, these surface corrugations could be attributed to the different wear phenomena, including a stress-induced micro-fracture and plastic deformation, a surface smoothening, and a surface rehybridization from diamond bonding to an sp 2 configuration. The similarity between ripples observed in the present study and ripples reported after repeated AFM tip scanning indicates that ripple formation is a rather universal phenomenon occurring in moving tribological contacts of different materials.  相似文献   

5.
This is the second paper of a two-part report. In the first paper, empirical data on the wear particle generation in carbon nitride coatings subjected to repeated sliding contact with a spherical diamond counter-face is reported. The effect of coating thickness on the wear particle generation is also discussed in the first paper. In this paper, a simplified theoretical expression, combining the Coffin-Manson equation with the analytical solution of a proposed elastic perfectly-plastic indentation model, is introduced. The expression successfully correlates critical number of friction cycles for wear particle generation Nc to coating thickness h, contact pressure P and radius of spherical asperity on the tip of the diamond pin R. With this expression, the lifespan of sliding components can be predicted.The theoretical results computed for diamond pin with a specific asperity radius value of 250 nm were compared with the experimental results reported in the first paper. The theoretical model successfully predicts the maximum lifespan of a component, Nc, in repeated sliding applications. The influences of various contact pressures and asperity radii on the maximum lifespan were also assessed using the model.  相似文献   

6.
A high-temperature ball-on-flat tribometer was used to investigate dry and oil-lubricated friction and wear of sintered Si3N4 and Si3N4/hexagonal boron nitride (H-BN) fibrous monoliths. The friction coefficients of base Si3N4 flats sliding against Si3N4 balls were in the range of 0.6–0.8 for dry and 0.03–0.15 for lubricated sliding, and the average wear rates of Si3N4 were 10–5 mm3 N–1 m–1 for dry sliding and 10–10–10–8 mm3 N –1m–1 for lubricated sliding. The friction coefficients of Si3N4 balls against composite fibrous monoliths were 0.7 for dry sliding and 0.01–0.08 for lubricated sliding. The average specific wear rates of the pairs were of the same order as those measured for the conventional Si3N4 pairs. However, the fibrous monoliths, in combination with sprayed dry boron nitride, resulted in reduction in the lubricated friction coefficients of the test pairs and significant reduction in their wear rates. The most striking result of this study was that the coefficients of friction of the Si3N4/H-BN fibrous monolith test pair were 70–80 lower than those of either roughened or polished Si3N4 when tests were performed under oil-lubricated sliding conditions over long distances (up to 5000 m). The results indicated that Si3N4/H-BN fibrous monoliths have good wear resistance and can be used to reduce friction under lubricated sliding conditions.  相似文献   

7.
O.O. Adewoye  T.F. Page 《Wear》1981,70(1):37-51
Electron optical microscopy was employed to study the friction and wear of commercial polycrystalline varieties of SiC and Si3N4 in air at ambient temperature. Friction and wear tests were conducted in a reciprocating configuration with conical riders (both diamond and ceramic) sliding on a flat ceramic substrate. Worn surfaces were examined by both scanning electron microscopy and transmission electron microscopy. In general, friction and wear in the diamond-ceramic couples were severe. Friction with ceramic-ceramic couples was low, with friction coefficients between 0.1 and 0.4, wear being absent in single-pass tests.With ceramic-ceramic couple multipass systems, wear of Si3N4 occurs by plastic deformation which increases in severity with sliding distance accompanied by a corresponding increase in friction coefficient. With SiC, wear occurs by a mixture of intergranular fracture due to grain boundary weakness and plastic deformation.  相似文献   

8.
Recent results of tribological properties of carbon nitride (CNx) coatings are reviewed. CNx coatings of 100 nm thickness were formed on Si-wafer and Si3N4 disks by the ion beam mixing method. Friction and wear tests were carried out against Si3N4 balls in the environments of vacuum, Ar, N2, CO2, O2 or air by a ball-on-disk tribo-tester in the load range of 80-750 mN and in the velocity range of 4-400 mm/s.It was found that friction coefficient μ is high (μ=0.2-0.4) in air and O2, and low (μ=0.01-0.1) in N2, CO2 and vacuum. The lowest friction coefficient (μ<0.01) was obtained in N2. It was also found that N2 gas blown to the sliding surfaces in air effectively reduced the friction coefficient down to μ≈0.017. Wear rate of CNx coatings varied in the range 10−9-10−5 mm3/N m depending on the environment.The wear mechanisms of CNx in the nanometer scale were studied by abrasive sliding of an AFM diamond pin in air. It was confirmed that the major wear mechanism of CNx in abrasive friction was low-cycle fatigue which generated thin flaky wear particles of nanometre size.  相似文献   

9.
Ziqi Sun  Ling Wu  Meishuan Li  Yanchun Zhou 《Wear》2009,266(9-10):960-967
Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on single-phase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5–15 N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53–0.63 against AISI 52100 steel and between 0.51–0.56 against Si3N4 ceramic. We found that wear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10?4 mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.  相似文献   

10.
Friction and wear properties of rice husk ceramics under dry condition   总被引:1,自引:0,他引:1  
The friction and wear behaviors of rice husk (RH) ceramics, prepared by carbonizing the mixture of rice husk and phenol resin at 900 °C in N2 gas environment, sliding against high carbon chromium steel (JIS SUJ2), austenitic stainless steel (JIS SUS304), and Al2O3 under dry condition were investigated using a ball-on-disk tribometer. The test results show that the friction coefficient of RH ceramics takes very low values 0.05–0.08 and 0.06–0.11 sliding against SUJ2 and SUS304, respectively, and much higher values around 0.14–0.23 against Al2O3. It was also shown that SUJ2 provides the lowest specific wear rate values below 10−9 mm2/N, while, those of SUS304 and Al2O3 mostly stayed between 10−9 to 10−8 mm2/N range. The worn surfaces of counterparts were observed with optical microscopy and analyzed using cross-sectional transmission electron microscopy with energy dispersive X-ray spectroscopy and electron diffraction. It was suggested that the tribological behaviors of RH ceramics are closely related with the formation of a transferred film, consisted of amorphous silica and carbon particles, on a counterpart surface. The transferred film was formed readily on SUJ2 balls, whereas for SUS304 the presence of the film was subject of the sliding conditions. Moreover, formation of the transferred film could not be detected on Al2O3 counterparts.  相似文献   

11.
Tribological behaviors of Si3N4 ceramic sliding against 316 stainless steel under seawater lubrication were investigated and compared with those under dry sliding and pure water lubrication. The results showed that SiO2 colloidal particles were formed on the rubbing surface of Si3N4 due to the friction-induced chemical reaction of Si3N4 with H2O, which were further aggregated into the silica gel with the assistance of ions in seawater. Because of the boundary lubrication of the silica gel layer, both the lowest friction coefficient and the smallest wear rates of Si3N4 and 316 steel were obtained in seawater.  相似文献   

12.
The dry or unlubricated sliding friction and wear properties of as-cast and annealed BMG (bulk metallic glass) with nominal composition of Fe66.7C7.0Si3.3B5.5P8.7Cr2.3Al2.0Mo4.5 against Si3N4 ceramic ball was studied, along with a conventional material, using a ball-on-disk tribotester at room temperature. The overall average coefficient of friction value of the as-cast BMG was in the range of 0.26?C0.42, which was better than the conventional material SUJ2 (0.36?C0.46) and comparable with SUS304 (0.31?C0.40). The wear mechanism of the Fe-based BMG changed with wear condition. The wear rate increased with increasing load. The hardness of the BMG increased during annealing, however, the wear resistance did not increase proportionally.  相似文献   

13.
Nano Si3N4 composites with tailored microstructure were developed using fine ß‐Si3N4 powders. Their wear behaviour was investigated. Whereas pure Si3N4 composites showed improved wear behaviour under dry rolling conditions with slip, TiN‐reinforced nano Si3N4 composites generate a self‐lubricating behaviour under dry sliding conditions. After chemical treatment with hydrogen sulphide, the friction coefficient and wear rate was found to be significantly decreased under dry sliding conditions. Additionally, the new composites possess higher fracture toughness than the pure nano Si3N4 materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Friction and wear behaviors of hydrogenated fullerene-like (H-FLC) carbon films sliding against Si3N4 ceramic balls were performed at different contact loads from 1 to 20 N on a reciprocating sliding tribometer in air. It was found that the films exhibited non-Amontonian friction behaviors, the coefficient of friction (COF) decreased with normal contact load increasing: the COF was ~0.112 at 1 N contact load, and deceased to ultralow value (~0.009) at 20 N load. The main mechanism responsible for low friction and wear under varying contact pressure is governed by hydrogenated carbon transfer film that formed and resided at the sliding interfaces. In addition, the unique fullerene-like structures induce well elastic property of the H-FLC films (elastic recovery 78%), which benefits the high load tolerance and induces the low wear rate in air condition. For the film with an ultralow COF of 0.009 tested under 20 N load in air, time of flight secondary ion mass spectrometry (ToF-SIMS) signals collected inside and outside the wear tracks indicated the presence of C2H3 and C2H5 fragments after tribological tests on the H-FLC films surface. We think that the tribochemistry and elastic property of the H-FLC films is responsible for the observed friction behaviors, the high load tolerance, and chemical inertness of hydrogenated carbon-containing transfer films instead of the graphitization of transfer films is responsible for the steady-state low coefficients of friction, wear, and interfacial shear stress.  相似文献   

15.
T.E. Fischer  H. Tomizawa 《Wear》1985,105(1):29-45
Friction and wear of Si3N4 sliding on itself were measured at room temperature in different gaseous and liquid environments. At low sliding speed the friction coefficient ? is 0.85 in dry argon and nitrogen and 0.8 in laboratory air and oxygen. In dry gases, wear occurs by two fracture mechanisms: within 1 μm of the surface, asperity contact produces very large local stresses and cracking on a very fine scale; 3–5 μm deeper the fracture follows weaknesses of the material and is intergranular fracture with some transgranular cleavage. No evidence of plastic deformation was obtained. In water- and humidity-saturated gases wear is predominantly by a tribochemical reaction which produces an amorphous protective layer in humid gas and dissolution in liquid water. In intermediate humidity, wear is a combination of fracture and tribochemistry; the latter increases adhesion between wear particles to form a layer of compacted wear particles on the wear track. The fact that humidity decreases wear in Si3N4 and increases it in A12O3 is explained by the differences in chemical reactivity and susceptibility to stress corrosion cracking between the two materials.  相似文献   

16.
《Wear》2007,262(7-8):765-771
Nano-Si3N4 particles were electrodeposited with nickel on copper substrate from a Ni bath. The friction and wear properties of the Ni/Si3N4 composite coating were evaluated while being lubricated with several various oils using a ball-on-disk sliding tester. The morphologies of the worn surfaces were observed using a scanning electron microscope. The chemical states of several typical elements on the worn surfaces were examined by means of X-ray photoelectron spectroscopy (XPS). Results indicated that the electrodeposited Ni/Si3N4 composition coating had excellent tribological properties while being lubricated with the ionic liquid. This was partly attributed to the high hardness of the electrodeposited nickel composite coating containing nano-sized Si3N4 and the tribochemical reaction between the lubricant and the sliding surface.  相似文献   

17.
The in-situ observations of wear particle generation of carbon nitride coating on silicon repeatedly sliding against a spherical diamond have been studied in terms of the critical friction cycles and normal loads. An environmental scanning electron microscope (E-SEM), in which a pin-on-disk tribotester was installed, has in-situ provided direct evidence of when and how the wear particle generation do occur during the repeated sliding of carbon nitride coating against a spherical diamond. The in-situ observations of non-conductive carbon nitride coating are therefore available free from surface charging with controllable relative humidity. The repeated sliding tests at a sliding speed of 50 μm/s have been carried out with the purpose of observing the ‘No wear particle generation’ region when varying normal load from 10 to 250 mN. It appears that until 20 friction cycles, the maximum Hertzian contact pressure Pmax for ‘No wear particle generation’ can be improved from 1.39 Y to 1.53 Y if silicon is coated by carbon nitride with a thickness of 10 nm, where Y is defined as the yield strength of silicon. The applicable enlargement of the ‘No wear particle generation’ region of carbon nitride coating has therefore been comparatively discussed with the silicon substrate from the view points of the friction coefficient and the specific wear rate. The mode transition maps have also been summarized for the repeated sliding of carbon nitride coating in terms of ‘No wear particle generation’, ‘Wear particle generation by microcutting’ and ‘Wear particle generation by microcutting and microfracturing’ three typical modes.  相似文献   

18.
Polyelectrolyte multilayers (PEMs) were prepared on Si substrates by alternative deposition of poly(sodium 4-styrenesulfonate) (PSS) as polyanion and poly (diallyldimethylammonium chloride) (PDDA) as polycation. The PEM film was characterized by means of ultraviolet-visible light absorption spectrometry and atomic force microscopy. The friction and wear behavior of the polymer film sliding against brass, 440C stainless steel, Si3N4 and WC balls was evaluated on a microtribometer. It was found that the multilayer film was uniform and compact, and it registered a lowered friction coefficient and extended antiwear life while sliding against soft counterparts, in particular, a brass ball. This could be because the polymeric transfer film had an enhanced adhesion on the soft metallic counterpart in the presence of inter-transferred metallic debris. Contrary to the above, the PEM film had a higher friction coefficient and shorter antiwear life while sliding against Si3N4 and WC balls, possibly owing to a higher shearing stress in the presence of stiff and hardly deformable hard counterparts. In other words, the polymeric transfer film on the hard couterparts, if any, would be easily scaled off, leading to decreased antiwear life. Moreover, the differences in the friction and wear behavior of the PEM film sliding against different counterparts were closely related to the differences in the chemical and crystallographic structure of the counterparts (ceramics Si3N4 and WC, and metals brass and stainless steel).  相似文献   

19.
Ti3Al coating was in situ synthesized successfully on pure Ti substrate by laser-cladding technology using aluminum powder as the precursor. The composition and microstructure of the prepared coating were analyzed by transmission electron microscopy, scanning electron microscopy (SEM), and X-ray diffraction technique. Thermal gravimetric analysis was used to evaluate the high-temperature oxidation resistance of the Ti3Al coating. The friction and wear behavior was tested through sliding against Si3N4 ball at elevated temperature of 20, 100, 300, and 500°C. The morphologies of the worn surfaces and wear debris were also analyzed by SEM and three-dimensional non-contact surface mapping. The results show that the Ti3Al coating with high microhardness, high-temperature oxidation resistance, and high temperature wear resistance. The pure Ti substrate is dominated by severe adhesion wear, abrasive wear, fracture, and severe plastic deformation at lower temperature, and severe adhesion wear, abrasive wear, plastic deformation, oxidation, and nitriding wear at higher temperature, whereas the Ti3Al coating experiences only moderate abrasive and adhesive wear when sliding against the Si3N4 ceramic ball counterpart. In addition, the wear debris of the laser-cladding Ti3Al coating sliding and Si3N4 friction pairs are much smaller than that of pure Ti substrate and Si3N4 friction pairs at elevated temperature.  相似文献   

20.
The influence of sliding speed on the unlubricated tribological behaviors of silicon nitride–boron nitride (Si3N4-hBN) composites was investigated with two modes in air by a pin-on-disc tribometer. Using the upper disc–on–bottom pin test mode, as the sliding speed increased, the friction coefficient of the sliding pairs showed an upward trend; for example, from 0.18 at the sliding speed of 0.40 m/s to 0.54 at the sliding speed of 1.31 m/s for the Si3N4/Si3N4–20% hBN pair. The surface analysis indicated that a tribochemical film consisting of SiO2 and H3BO3 formed on the wear surfaces of the Si3N4/Si3N4–20% hBN sliding pair at sliding speeds of 0.40 and 0.66 m/s. Moreover, the formation of this film lubricated the wear surfaces. At the sliding speed of 1.31 m/s, no tribochemical film formed on the wear surfaces, most likely due to the increase in surface temperature. In the upper pin–on–bottom disc test mode, the wear mechanism was dominated by abrasive wear, and no tribochemical products could be detected on the wear surfaces. The increase in sliding speed weakened the degree of abrasive wear, leading to a decrease in the friction coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号