首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
对自制聚乙烯醇(PVA)/聚丙烯腈(PAN)共混膜渗透汽化分离低浓度醋酸-水溶液体系的性能进行了研究。分别考察了操作温度、下游表压以及醋酸浓度对PVA/PAN共混膜渗透蒸发分离性能影响。结果表明,随着操作温度增大和醋酸浓度及下游压力的减小,膜的渗透通量增加,分离因子减小。在操作温度323 K、下游表压8 mm Hg的条件下,采用膜厚为45μm的PVA/PAN共混膜对90wt.%的醋酸-水体系进行渗透汽化分离,其渗透通量和分离因子分别达到3746 g·m-2·h-1和3.75。  相似文献   

2.
对自制改性聚乙烯醇(PVA)/聚丙烯腈(PAN)共混膜渗透汽化分离异丙醇-水溶液体系的性能进行了研究。分别考察了操作温度、下游表压以及异丙醇浓度对PVA/PAN共混膜渗透蒸发分离性能影响。结果表明,随着操作温度及异丙醇浓度的增大和下游压力的减小,膜的渗透通量增加,分离因子减小。在操作温度298 K、下游表压4k Pa的条件下,采用膜厚为42μm的PVA/PAN共混膜对90%(质量分数)的异丙醇-水体系进行渗透汽化分离,其渗透通量和分离因子分别达到1 940 g·m-2·h-1和22.2。  相似文献   

3.
全氟磺酸改性聚乙烯醇渗透汽化膜分离乙酸乙酯-水溶液   总被引:1,自引:1,他引:1  
以聚乙烯醇(PVA)为原材料,全氟磺酸(PFSA)为共混改性材料,以聚丙烯腈(PAN)中空纤维超滤膜为底膜制备了PVAfPAN、PVA-PFSA/PAN复合膜,并用于乙酸乙酯脱水.考察了共混涂膜液中PVA、PFSA配比,交联剂酒石酸(Tat)用量以及原料液温度与浓度对PVA、PAN、PVA-PFSA、PAN复合膜分离件能的影响.实验结果表明,Tac交联的PVA,PAN、PVA-PFSA/PAN复合膜均对水具有较好的分离选择性.共混涂膜液中PVA/PFSA质量比为1/1、Tac/PVA质量比为l/5时所制备的PVA-PFSA/PAN复合膜渗透汽化分离性能最佳.40下℃此复合膜用于分离98%(wt)的乙酸乙酯水溶液时,其渗透通量和分离因予分别为81.1 g·m-2·h-1和1890.同样条件下,与交联PVA/PAN复合膜相比,交联PVA-PFSA/PAN复合膜的渗透通量显著提高.  相似文献   

4.
分别研究了甲醇(MeOH)和甲基叔丁基醚(MTBE)纯纽分在二醋酸纤维素(CA)和三醋酸纤维素(CTA)膜内的吸着性能、扩散系数及渗透通量.结果表明,活度在0.2~1.0范围内,MeOH在CA和CTA膜内的平衡吸着质量分数分别为0.018~0.172和0.032~0.175,远大于MTBE,而组分在2种膜中的溶解度无明显差别,2种组分在CTA膜中的扩散系数和渗透通量均大于CA膜.考察了进料温度在25℃、32℃和40℃下,料液中MeOH质量分数为5%~35%时,MeOH/MTBE混合物在CA膜中的渗透通量和分离系数,结果表明,随着进料温度和料液中MeOH浓度的升高,通量增加,分离系数减小.  相似文献   

5.
王维  姜雪迎  李悦  苏丽萍  邹昀  童张法 《化工学报》2020,71(8):3807-3818
为了实现低能耗且高效分离乙酸乙酯中的低含量水分,选用亲水型纳米ZSM-5沸石分子筛材料作为改性剂,填充到聚乙烯醇(PVA)聚合物中制备PVA/ZSM-5混合基质膜(MMMs)。采用SEM、FTIR、XRD、TGA和接触角测量仪等对膜材料的形态、物化性质进行表征分析,并考察膜材料在不同溶液中的溶胀行为以及通过单因素实验探究填料含量、进料温度、进料浓度对渗透汽化分离乙酸乙酯和水混合物的性能的影响。结果表明,ZSM-5与PVA结合紧密且分散均匀,除了ZSM-5固有的亲水性外,ZSM-5还与PVA分子之间存在氢键相互作用,但两者之间并没有发生化学作用。随着进料浓度的增加,渗透通量增大,而分离因子呈减小趋势;随着进料温度升高,渗透通量和分离因子均增大;随着ZSM-5填充量的增加,渗透通量和分离因子均先增大后减小。当ZSM-5填充量为6%(质量)时,渗透通量和分离因子达到最大值,分别为1231 g/(m2·h)和6072,相比纯PVA膜分离指数(PSI)提高了2.9倍。新设计的PVA/ZSM-5混合基质膜(MMMs)可在工业水平上用于乙酸乙酯及其他类似化合物的脱水。  相似文献   

6.
以聚偏氟乙烯(PVDF)为支撑层,选用疏水性纳米SiO_2粉体作为改性剂,制备出聚二甲基硅氧烷(PDMS)复合膜材料,并用于乙酸正丁酯/水溶液的渗透汽化分离。采用SEM、FTIR、XRD、拉伸实验、接触角及正电子湮没寿命谱测定等对膜材料物理化学性能进行了表征,考察了膜材料的溶胀行为及渗透汽化性能。结果表明,SiO_2在PDMS膜中分散均匀,且没有发生化学作用,并提高了膜材料的机械强度和疏水性。随着SiO_2添加量增加,膜在乙酸正丁酯溶液中的溶胀度先升后降,渗透通量呈下降趋势,而分离因子先增大后减小。当SiO_2添加量为4%(质量)时,随进料浓度的增加,渗透通量增大,分离因子先增大后减小;随着温度升高,渗透通量增大,分离因子减小;渗透通量和分离因子最大值分别为240 g·m~(-2)·h~(-1)和542。  相似文献   

7.
采用聚乙烯醇(PVA)膜渗透汽化分离浓缩低浓度丙酮/水溶液,考察了原料液浓度、温度、膜后真空度等对PVA膜渗透通量和分离因子的影响。结果表明,随着原料液浓度的增加、温度和膜后真空度的升高,渗透通量和分离因子均呈增加的趋势,温度对渗透通量的影响基本符合Arrhenius方程。  相似文献   

8.
以硅烷改性ZSM-5分子筛为填充剂,采用沉浸凝胶相转化法制备了ZSM-5/BPPO非对称膜. 结果表明,分子筛在BPPO膜中分散均匀,填充分子筛后膜表面粗糙度增大、疏水性增强. 以低浓度乙醇-水体系为研究对象,考察了分子筛填充量、进料液浓度及进料液温度对ZSM-5/BPPO膜渗透汽化分离性能的影响. 结果表明,随乙醇浓度增大,ZSM-5/BPPO膜的分离因子减小,渗透通量增大;随进料液温度升高,ZSM-5/BPPO膜的分离因子及渗透通量均增大;在60℃、分子筛填充量为0.3%(w)时,ZSM-5/BPPO膜对5%(w)乙醇-水体系的分离因子高达18.49,渗透通量为529.69 g/(m2×h). ZSM-5/BPPO膜对不同醇-水体系的分离结果表明,醇类分子量越大,膜分离性能越好.  相似文献   

9.
为了提升从水溶液中回收乙酸乙酯的渗透汽化分离效率,将疏水ZIF-67颗粒填充到聚醚共聚酰胺(PEBA)中,制备得到ZIF-67/PEBA杂化膜。通过扫描电镜(SEM)、能谱(EDS)、接触角测量、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、热重(TGA)和溶胀度测试等手段对ZIF-67和杂化膜的物理化学性质进行表征,通过渗透汽化实验考察ZIF-67质量分数、进料质量分数和温度对膜分离性能的影响。结果表明ZIF-67与PEBA基质之间为物理共混,杂化膜疏水性增强。随着ZIF-67质量分数的增加,总渗透通量先降低后升高,分离因子先升高后降低,当ZIF-67质量分数为5%时分离因子最高;随着进料质量分数或温度增加,总渗透通量和分离因子均增加,最大总渗透通量为2299g·m~(-2)·h~(-1),最大分离因子为122。研究为渗透汽化技术工业化应用提供了必要的基础数据和理论依据。  相似文献   

10.
依据溶度参数原则和分离甲基叔丁基醚(MTBE)/甲醇(MeOH)混合物的选择渗透性,选择了聚乙烯醇(PVA)为复合膜的分离层材料,聚丙烯腈(PAN)、醋酸纤维素(CA)系列为支撑层的膜材料.初步讨论了膜材料和复合膜结构对分离性能的影响,给出了用不同成膜工艺制备的膜性能,获得了可用于有机/有机体系分离的性能优良的PVA/PAN和PVA/CA复合膜,以及CTA中空纤维渗透汽化膜.  相似文献   

11.
Poly(vinyl alcohol)(PVA)/poly(acrylic acid)(PAA) and PVA/sulfosuccinic acid (SSA) membrane performances have been studied for the pervaporation separation of methyl tert‐butyl ether (MTBE)/methanol (MeOH) mixtures with varying operating temperatures, amount of cross‐linking agents, and feed compositions. Typically, the separation factor, about 4000, and the permeation rate, 10.1 g/m2/h, were obtained with PVA/PAA = 85/15 membrane for MTBE/MeOH = 80/20 mixtures at 50°C. For PVA/PAA membranes, it could be considered that the flux is affected by the structural changes of the membranes due to the cross‐linking and the free carboxylic acid group also took an important role in the separation characteristics through the hydrogen bonding with PVA and the feed components leading to the increase of flux. The latter membrane of the 5% SSA membrane shows the highest separation factor of 2095 with the flux of 12.79 g/m2/h for MTBE/MeOH = 80/20 mixtures at 30°C. Besides the swelling measurements were carried out for pure MTBE and MeOH, and MTBE/MeOH = 90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. It has been recognized that there are two factors, the membrane network and the hydrogen bonding in the swelling measurements of PVA/SSA membranes. These two factors act interdependently on the membrane swelling. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1699–1707, 2000  相似文献   

12.
Multiwalled carbon nanotube (MWNT)/poly (vinyl alcohol) (PVA) blend membranes were prepared by the solution‐casting method to determine the effect of MWNTs with nanoscale empty inner space along the tube length on the pervaporation performance of a PVA membrane in the separation of alcohol/water mixtures. The blend membranes were then characterized with several analytical methods such as transmission electron microscopy, differential scanning calorimetry, and X‐ray diffractometry: Transmission electron microscopy showed that the MWNTs were homogeneously distributed through the PVA matrix. The glass‐transition temperature of the PVA membrane was increased from 69.21 to 78.53°C via blending with MWNTs. The crystallinity of the PVA matrix decreased with increasing MWNTs up to 5 wt % from 41 to 36%. The pervaporation properties of the blend membranes were completely different from those of the pure PVA membrane in the separation of water/ethanol mixtures. The flux of the membrane was increased with the amount of MWNTs, whereas the separation factor was maintained up to 1.0 wt % MWNTs. However, beyond that, it was reduced. These results suggested that two factors, the crystallinity of the membrane and the diameters of the MWNTs, affected the performance of the membranes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
J. Lv  G. Xiao 《化学工程与技术》2010,33(12):2051-2058
Poly(vinyl alcohol)/polyacrylonitrile blend membranes were prepared to separate pyridine/water mixtures by pervaporation. The membranes were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The effects of membrane composition, feed pyridine concentration, operating temperature, downstream pressure and ultrasound irradiation on the separation process were evaluated. The experimental results indicated that with increasing PVA mass ratio and operating temperature the permeate flux increased but the separation factor decreased, while with increasing feed concentration and downstream pressure the separation factor increased and the permeate flux decreased. It was observed that Ultrasound irradiation enhanced the permeate flux.  相似文献   

14.
By blending a rigid polymer, sodium alginate (SA), and a flexible polymer, poly(vinyl alcohol) (PVA), SA/PVA blend membranes were prepared for the pervaporation separation of ethanol–water mixtures. The rigid SA membrane showed a serious decline in flux and a increase in separation factor due to the relaxation of polymeric chains, whereas the flexible PVA membrane kept consistent membrane performance during pervaporation. Compared with the nascent SA membrane, all of the blend membranes prepared could have an enhanced membrane mobility by which the relaxation during pervaporation operation could be reduced. From the pervaporation separation of the ethanol–water mixtures along with the temperature range of 50–80°C, the effects of operating temperature and PVA content in membrane were investigated on membrane performance, as well as the extent of the relaxation. The morphology of the blend membrane was observed with PVA content by a scanning electron microscopy. The relaxational phenomena during pervaporation were also elucidated through an analysis on experimental data of membrane performance measured by repeating the operation in the given temperature range. SA/PVA blend membrane with 10 wt % of PVA content was crosslinked with glutaraldehyde to enhance membrane stability in water, and the result of pervaporation separation of an ethanol–water mixture through the membrane was discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:949–959, 1998  相似文献   

15.
Membranes consisting of ionically crosslinked polyacrylic acid (PAA) and Nylon 6 were prepared and tested for the pervaporation separation of acetic acid-water mixtures. The polyacrylic acid (PAA) membranes were crosslinked in aluminum nitrate aqueous solution while the polyacrylic acid (PAA)-Nylon 6 blends were cast from homogeneous PAA-Nylon 6 mixtures to appropriate thicknesses and then crosslinked in aqueous aluminum nitrate solutions. Optimum pervaporation results were obtained from blends of Nylon 6 and PAA in the weight ratio of 60–75 wt% Nylon 6 and 25–40 wt% PAA which have separation factors (water/acetic acid) of over 60 and flux rates higher than 100 g/m2 h at 15°C for the separation of acetic acid-water mixtures. The flux rates and separation factors could be altered by changing the blend composition of the membrane. The effects of the feed composition on the separation factors were investigated.  相似文献   

16.
The pervaporation separation of methanol–water (M/W) mixtures was carried out using crosslinked poly(vinyl alcohol) (PVA) membranes with the low molecular weight of poly(acrylic acid) (PAA) as the crossinking agent. The PVA/PAA ratio in the crosslinked membrane was 90/10, 85/15, and 80/20 by weight. The operating temperatures were 50, 60, and 70°C, and the compositions of methanol–water mixtures to be separated were 70/30, 80/20, 90/10, and 95/5 (M/W) solutions. In all cases, the PVA/PAA = 80/20 membrane showed the best results. For M/W = 90/10 solution, the separation factor, αw/m = 465, and the permeation rate, 0.109 kg/m2h, at 70°C were obtained using the PVA/PAA = 80/20 menbrane. The permeation rate and the separation factor for M/W = 95/5 solution showed 0.033 kg/m2h and αw/m = 2650, respectively, when PVA/PAA = 80/20 membrane was used. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Summary Dense polymer membranes were made by mixing aqueous solutions of hydrophilic polymers poly(vinyl alcohol) (PVA) and polyethyleneimine (PEI) in different ratios for investigating the separation of Tetrahydrofuran (THF)/water azeotropic mixtures by pervaporation (PV). In order to gain a more detailed picture of the molecular transport phenomenon, we have performed sorption gravimetric experiments at 30 °C to compute diffusion, swelling, sorption and permeability coefficients of PVA/PEI membranes in the presence of THF and water. The membranes were found to have good potential for breaking the azeotrope of THF at 6% concentration of water. An increase in PVA content in the blend caused a reduction in the flux and an increase in selectivity. Among the blends tested in the study, the 5:1 PVA/PEI blend membrane showed the highest separation factor of 181.5, exhibited a flux of 1.28 kg/m2h for THF respectively at azeotropic feed composition.  相似文献   

18.
研究了聚乙烯醇(PVA)/聚酰胺(PA)复合膜渗透汽化(PV)分离异丙醇(IPA)/水混合物时运行工艺的影响,模拟了渗透通量(J)预测方程。结果表明,PVA/PA复合膜在料液中w(IPA)%在0~95%范围内或在25℃~100℃的操作温度范围获得的渗透液中IPA含量[w′(IPA)]都小于1%,J随料液中w(IPA)%的下降或操作温度的提高而增加。分离性能预测方程的拟合结果与试验数据有良好一致性。在室温条件下,经过90 d的间歇运行或经过120 d的长期贮存后,PVA/PA复合膜的分离性能稳定,在IPA/水混合物的共沸温度80.4℃运行时的J为73.1 g/m^2·h,渗透液中的水含量[w′(H2O)]都大于99.5%,展示了其在食品、生物、制药和化学等工业中将具有良好的应用前景。  相似文献   

19.
Zeolite 4A-incorporated poly(vinyl alcohol)/poly(vinyl pyrrolidone) (PVA/PVP) membranes were prepared for pervaporation separation of methanol/methyl acetate mixtures. These membranes were characterized by Infrared spectroscopy, X-ray diffraction and Scanning electron microscopy. The results showed that crystallinity of the membrane decreased with the increase of zeolite 4A content. The effect of zeolite loading, feed composition and temperature on the membrane separation performance were discussed in detail. With the increase of zeolite 4A content, permeation flux increased continuously, but separation factor first increased and then decreased. The addition of 2.5 wt% zeolite 4A in the polymer membrane improved the separation factor from 12.9 (for PVA/PVP membrane) to the maximum value of 34.4 for 20 wt% methanol in feed at 45 °C. The separation factor decreased with increasing feed temperature, however, the flux increased with increasing feed temperature. Zeolite 4A-incorporated PVA/PVP membranes provide an effective method for the separation of methanol/methyl acetate azeotropic mixtures.  相似文献   

20.
Dual‐ and multilayer composite membranes, consisting of poly(acrylic acid) (PAA) and poly(vinylidene fluoride) (PVDF), were synthesized by the plasma‐induced polymerization technique. The dual‐layer membrane had a dense PAA layer grafted onto a microporous PVDF substrate, whereas in the multilayer membranes, the grafted PAA and the PVDF layers were arranged in an alternating sequence (e.g., PAA/PVDF/PAA and PAA/PVDF/PAA/PVDF/PAA). These membranes were used in a pervaporation process to separate ethanol–water solutions. For the dual‐layer membranes, the results indicated that the separation factor increased and the permeation flux decreased with increasing amounts of grafted PAA. For the case of grafting yield < 0.6 mg/cm2, the composite membrane demonstrated poor separation. As the grafting yield reached 0.85 mg/cm2, a sharp increase of the separation factor was observed. For the multilayer membranes, the pervaporation performances were very good, with high separation factors (on the order of 100) and reasonable permeation fluxes over a wide ethanol concentration range. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2266–2274, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号