首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with °- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the paper.  相似文献   

2.
The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of decentralized H-infinity controller for discrete-time singular large-scale systems is presented in terms of the solvability to a certain system of linear matrix inequalities by linear matrix inequality (LMI) approach, and the feasible solutions to the system of LMIs provide a parameterized representation of a set of decentralized H-infinity controller. The given example shows the application of the method.  相似文献   

3.
This paper studies the robust fuzzy control problem of uncertain discrete-time nonlinear Markovian jump systems without mode observations. The Takagi and Sugeno (T-S) fuzzy model is employed to represent a discrete-time nonlinear system with norm-bounded parameter uncertainties and Markovian jump parameters. As a result, an uncertain Markovian jump fuzzy system (MJFS) is obtained. A stochastic fuzzy Lyapunov function (FLF) is employed to analyze the robust stability of the uncertain MJFS, which not only is dependent on the operation modes of the system, but also directly includes the membership functions. Then, based on this stochastic FLF and a non-parallel distributed compensation (non-PDC) scheme, a mode-independent state-feedback control design is developed to guarantee that the closed-loop MJFS is stochastically stable for all admissible parameter uncertainties. The proposed sufficient conditions for the robust stability and mode-independent robust stabilization are formulated as a set of coupled linear matrix inequalities (LMIs), which can be solved efficiently by using existing LMI optimization techniques. Finally, it is also demonstrated, via a simulation example, that the proposed design method is effective.  相似文献   

4.
This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It^o stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.  相似文献   

5.
This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It^o stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.  相似文献   

6.
The design of robust H-infinity controller for uncertain discrete-time Markovian jump systems with actuator saturation is addressed in this paper. The parameter uncertainties are assumed to be norm-bounded. Linear matrix inequality (LMI) conditions are proposed to design a set of controllers in order to satisfy the closed-loop local stability and closed-loop H-infinity performance. Using an LMI approach, a set of state feedback gains is constructed such that the set of admissible initial conditions is enlarged and formulated through solving an optimization problem. A numerical example is given to illustrate the effectiveness of the proposed methods.  相似文献   

7.
The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singular time- delay systems, based on which, a sufficient condition is presented for a singular time-delay system to be regular, impulse free and stable with an H-infinity performance. The robust H-infinity control problem is solved and an explicit expression of the desired state-feedback control law is also given. The obtained results are formulated in terms of strict linear matrix inequalities (LMIs) involving no decomposition of system matrices. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

8.
The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singular time- delay systems, based on which, a sufficient condition is presented for a singular time-delay system to be regular, impulse free and stable with an H-infinity performance. The robust H-infinity control problem is solved and an explicit expression of the desired state-feedback control law is also given. The obtained results are formulated in terms of strict linear matrix inequalities (LMIs) involving no decomposition of system matrices. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

9.
This paper deals with the problems of robust stochastic stabilization and H-infinity control for Markovian jump nonlinear singular systems with Wiener process via a fuzzy-control approach. The Takagi-Sugeno (T-S) fuzzy model is employed to represent a nonlinear singular system. The purpose of the robust stochastic stabilization problem is to design a state feedback fuzzy controller such that the closed-loop fuzzy system is robustly stochastically stable for all admissible uncertainties. In the robust H-infinity control problem, in addition to the stochastic stability requirement, a prescribed performance is required to be achieved. Linear matrix inequality (LMI) sufficient conditions are developed to solve these problems, respectively. The expressions of desired state feedback fuzzy controllers are given. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.  相似文献   

10.
11.
The problem of observer-based robust H-infinity control is addressed for a class of linear discrete-time switched systems with time-varying norm-bounded uncertainties by using switched Lyapunov function method. None of the individual subsystems is assumed to be robustly H-infinity solvable. A novel switched Lypunov function matrix with diagonal-block form is devised to overcome the difficulties in designing switching laws. For robust H-infinity stability analysis, two linear-matrix-inequality-based sufficient conditions are derived by only using the smallest region function strategy if some parameters are preselected. Then, the robust H-infinity control synthesis is studied using a switching state feedback and an observer-based switching dynamical output feedback. All the switching laws are simultaneously constructively designed. Finally, a simulation example is given to illustrate the validity of the results.  相似文献   

12.
讨论了线性定常广义系统的稳定性, 给出了这种系统H 范数形式的稳定性判据, 在此基础上, 利用线性矩阵不等式 (LMI)方法讨论了含有不确定参数的线性广义控制系统的鲁棒镇定问题, 并相应地给出了鲁棒镇定控制器的设计.  相似文献   

13.
This paper proposes improved stochastic stability conditions for Markovian jump systems with interval time-varying delays. In terms of linear matrix inequalities (LMIs), less conservative delay-range-dependent stability conditions for Markovian jump systems are proposed by constructing a different Lyapunov-Krasovskii function. The resulting criteria have advantages over some previous ones in that they involve fewer matrix variables but have less conservatism. Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper.  相似文献   

14.
时变时滞离散广义Markov 跳变系统的鲁棒稳定性   总被引:1,自引:0,他引:1  
研究一类具有区间时变时滞的离散不确定广义Markov跳变系统的时滞相关鲁棒稳定性问题.通过将Jensen不等式与一个新的定界不等式相结合,得到了一个新的稳定性判据,该判据中仅含有Lyapunov变量,具有较小的计算负担.进而,基于凸组合方法得到了另一个新的稳定性判据,该判据引入了一些自由矩阵变量,具有较小的保守性.数值算例表明了所提出方法的有效性.  相似文献   

15.
This paper proposes a receding horizon control scheme for a set of uncertain discrete-time linear systems with randomly jumping parameters described by a finite-state Markov process whose jumping transition probabilities are assumed to belong to some convex sets. The control scheme for the underlying systems is based on the minimization of the worst-case one-step finite horizon cost with a finite terminal weighting matrix at each time instant. This robust receding horizon control scheme has a more general structure than the existing robust receding horizon control for the underlying systems under the same design parameters. The proposed controller is obtained using semidefinite programming.  相似文献   

16.
不确定广义大系统分散鲁棒H∞保性能控制   总被引:1,自引:1,他引:1  
针对一类状态矩阵和控制矩阵存在参数不确定的广义大系统,研究其分散鲁棒H∞保性能控制问题,系统中不确定项具有数值界,可不满足匹配条件.基于广义系统的有界实引理,应用线性矩阵不等式(LMI)方法,给出了不确定广义大系统存在分散鲁棒H∞保件能控制器的一个LMI条件,并用这个线性矩阵不等式系统的可行解提供了一组分散鲁棒H∞保性能控制律的参数化表示,最后用例子说明该方法的应用.  相似文献   

17.
This paper deals with H-infinity filtering of discrete-time systems with polytopic uncertainties. The un- certain parameters are supposed to reside in a polytope. By using the parameter-dependent Lyapunov function approach and introducing some slack matrix variables, a new sufficient condition for the H-infinity filter design is presented in terms of solutions to a set of linear matrix inequalities (LMIs). In contrast to the existing results for H-infinity filter design, the main advantage of the proposed design method is the reduced conservativeness. An example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

18.
This article is concerned with robust stochastic stability for a class of uncertain Markovian jump discrete-time recurrent neural networks (MJDRNNs) with time delays. The uncertainty is assumed to be of the norm-bounded form. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, some sufficient criteria are proposed for the robust stochastic stability in the mean square of the MJDRNNs with constant or mode-dependent time delays. The proposed LMI-based results are computationally efficient as they can be solved numerically using standard commercial software. The validity of the obtained results are further illustrated by two simulation examples.  相似文献   

19.
讨论了一类具有Markov跳跃参数的不确定混合线性时滞系统的鲁棒非脆弱控制问题.给出了使系统鲁棒随机稳定并具有给定的H∞性能的充分条件.并且通过参数变换和Schur补定理,将已得出的充分条件转化成一系列耦合的线性矩阵不等式形式以便于控制器参数的求解.仿真结果表明了本文提出的鲁棒非脆弱控制方法的有效性.  相似文献   

20.
This paper deals with delay-dependent stochastic stability and bounded real lemma(BRL)for Markovian jump linear systems with interval time-varying delays.By constructing some new Lyapunov functionals and using the Jensen’s integral inequality method,the free weighting matrix method,the convex combination method and the delay decomposition approach integratedly,some less conservative delay-dependent stability criteria and BRL are established. Numerical examples are given to show the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号