共查询到19条相似文献,搜索用时 118 毫秒
1.
针对目前道路交通肇事逃逸案件逐年增多情况,利用改进后的粗糙集属性约简算法对案件记录卷宗中的大量数据进行约简处理,得到和原始数据等效的属性约简集,将此约简集作为挖掘的数据基础,大大缩小了数据量,使得侦破人员可以将注意力集中于重要的物证采集上,减少了案件侦破中不必要的人、财、物消耗,同时数据量的减小也相应的加快了挖掘的速度。将在此约简集基础上挖掘得到的规则和关联规则算法得出的规则进行比较,证明改进后的约简算法是有效的。 相似文献
2.
基于核属性依赖的属性约简算法研究 总被引:1,自引:0,他引:1
数据库中的数据往往含有大量冗余或不必要的属性,严重降低了数据挖掘算法的时间效率和算法质量,因此删除数据的冗余属性和无关属性即属性约简就成了数据预处理过程中的主要任务,而粗糙集理论是处理属性约简的一个非常实用的理论工具.在深入研究粗糙集理论的基础上,结合数据库操作知识给出了基于核属性依赖的属性约简新方法.该算法能过滤掉属性集合中的无关属性和冗余属性,从而得到满意的属性约简,该算法复杂度较小.实验结果证明了该算法有效. 相似文献
3.
属性约简是粗糙集理论的重要研究内容之一,目前已有许多属性约简算法。但这些算法中主要针对一致决策表,当决策表是不相容的情况下,常用的计算全部属性约简的差别矩阵算法会产生错误的结果。为了解决这个问题,引入了一个改进的二进制分辨矩阵,提出了一种基于改进的二进制分辨矩阵的属性约简算法。并利用上述算法结合实例进行属性约简,证明了算法的正确性和有效性。 相似文献
4.
5.
基于二进制可辨矩阵的属性约简算法的改进 总被引:11,自引:1,他引:11
属性约简是粗糙集理论的核心内容之一,信息系统中知识(属性)并不是同等重要的,甚至其中某些知识是冗余的。属性约简是在保持信息系统中知识量(即分辨能力)不变的条件下,删除其中不相关或不重要的知识,现已证明寻找信息系统的最小属性约简是NP-hard问题。解决这类问题的一般方法是采用启发式算法求出最优或次最优约简。对支天云等所给出的二进制可辨矩阵的化简算法进行了改进,并根据属性的分辨能力的大小,提出了一种基于二进制可辨矩阵的思路清晰、实现简便的属性约简算法。通过算法分析表明,该算法是更加高效的。 相似文献
6.
7.
8.
属性约简是应用粗糙集理论进行数据挖掘有效的方法之一,HORAFA属性约简算法它的不足之处在于约简效率和完备性.应用粗糙集对知识分类的特点,建立了新的数据挖掘模型.在模型的属性约简模块中,详细分析了HORAFA算法,提出了对其改进的HORAFA-AFVDM算法.该算法是在核中依次加入属性重要性最大的属性a,对于Red=Red è{a},当POSred-ai(D)=POSC(D)时删除a,直到不能再删为止,保证了算法的完备性.实验在MATLAB环境下实现,算法的测试数据来源于UCI数据集,通过对改进前后两种算法的比较,证实了改进后算法从属性约简效率和算法运行时间上均比之前的算法有显著的提高,文中将该数据挖掘模型应用到短信数据挖掘系统中. 相似文献
9.
本文就粗糙集理论及其在数据挖掘中的应用方法进行了较为深入系统地研究。重点研究了扩展粗糙集模型;基于连续属性的粗糙集模型及其约简算法;不完备信息系统下粗糙集模型及其约简算法;以及更一般的集值信息系统及其约简算法。 相似文献
10.
本文就粗糙集理论及其在数据挖掘中的应用方法进行了较为深入系统地研究。重点研究了扩展粗糙集模型;基于连续属性的粗糙集模型及其约简算法;不完备信息系统下粗糙集模型及其约简算法;以及更一般的集值信息系统及其约简算法。 相似文献
11.
属性约简是粗糙集(rough set,RS)理论进行规则提取中的重要步骤之一.决策表的最小属性约简是NP-hard问题.遗传算法(genetic algorithm,GA)是求解此类问题的有效方法之一,但在利用遗传算法求解属性约简过程中,需要计算各个个体的适应度,每计算一个个体的适应度,需要根据该个体代表的属性组,组织决策表,对组织后的决策表进行扫描,这样,算法就需要多次对决策表进行操作,影响到算法的执行效率.我们基于集合理论,提出了关系积概念,把决策表的属性约简过程转化为关系积的运算,利用关系积计算遗传算法各个体的适应度,不需要扫描决策表,避免了对决策表的操作,提高了遗传算法求解属性约简的效率,通过实例对这一算法进行了详细的描述. 相似文献
12.
通过具体算例指出基于同可区分度属性约简不是王国胤等提出的条件信息熵约简。理论上证明了基于同可区分度属性约简仅是基于差别矩阵的HU属性约简,它是一种基于梁吉业等提出的新条件信息熵属性约简。证明了同可区分度约简协调集一定是代数协调集和信息熵协调集,从而代数约简核属性和信息熵核属性一定是同可区分度约简核属性的子集。 相似文献
13.
为了在动态变化的决策表中,快速方便地获得新的属性约简,利用数组元素对差别矩阵中的属性组合进行计数,提出一种基于数组的增量式属性约简更新算法。当决策表动态变化时,根据数组元素的取值变化,获得差别矩阵中增加和减少的元素,依据这些元素更新原属性约简,快速得到新的最小属性约简。理论分析及实例验证了提出的算法是有效的。 相似文献
14.
基于可分辨矩阵的属性约简算法需要占用大量的存储空间,可分辨矩阵中许多元素项对约简是多余的;并且随着问题规模的增大,该类算法的效率并不理想。针对上述不足,提出一种基于有序差别集的属性约简算法,该算法不需要创建可分辨矩阵和生成多余的元素项,大大降低了存储量和计算量,从而提高了属性约简效率,使算法的时间复杂度和空间复杂度分别降为max{O(|C|2 |U/C|2),O(|C|2|MsCount|)}和O(|MsCount|)。实验表明该算法是有效的、高效的。 相似文献
15.
为了解决基于差别矩阵属性约简的计算效率问题,首先以计数排序的思想设计了一个新的计算U/C的高效算法,其时间复杂度降为O(|C||U|)。其次分析了基于差别矩阵的属性约简算法的不足,提出了改进的差别矩阵的定义,利用快速计算核属性算法生成的核属性和出现频率最多的属性来降低差别矩阵的大小,并设计了基于改进的差别矩阵的快速属性约简算法,证明了该新算法的时间复杂度和空间复杂度分别被降为max(O|C|2Σ0≤i相似文献
16.
基于区分矩阵的传统属性约简方法具有直观易理解的优点,但时间和空间复杂度都很高,当数据规模较大或条件属性较多时,会无法快速得到约简结果.为解决该问题,在区分关系的基础上构造了条件区分能力来进行属性选择,提出一种基于条件区分能力的属性约简算法.而为了进一步加快属性重要性的计算、提高约简效率,依据大数定律中频率的稳定性,通过... 相似文献
17.
一种高效的增量式属性约简算法 总被引:2,自引:0,他引:2
针对粗糙集中求属性核和属性约简存在的问题,首先给出了改进的差别矩阵定义,进而提出一种基于改进差别矩阵的核增量式更新算法,用于解决对象动态增加情况下核的更新问题;同时,为了降低现有增量式属性约简算法的时间、空间复杂度,提出一种不存储差别矩阵的高效属性约简算法,用于处理对象动态增加情况下属性约简的更新问题.理论分析及实验结果均表明了所提出算法的有效性和可行性. 相似文献
18.
分析了传统属性频率函数作为属性重要度的不足,重新定义了属性重要度,提出了一种基于差别矩阵属性重要度的属性约简完备算法,即CRABSA(Complete Reduction Algorithm Based on the Significance of Attribute)。该算法采用迭代思想,在每次迭代过程中根据属性重要度SGF(a)选择必要的条件属性加入约简R中。由SGF(a)的定义可知,算法能确保在大多数情况下能得到决策表的最小约简。分析了算法在最坏情况下的时间复杂度,给出了该算法相对Pawlak约简的完备性的证明。 相似文献
19.
针对不相容决策表中一些属性约简算法的不足,结合粗糙集的代数观与信息观的优点,对差别矩阵加以改进,提出了一种新的属性约简算法,该算法在保证约简后决策表的正域和条件信息熵不变的情况下,降低了时间复杂度。通过实例说明了该算法的有效性和可行性。 相似文献