首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of the protective film formed by benzotriazole (BTAH) on the surface of the 90/10 CuNi alloy in deaerated 0.5 mol L−1 H2SO4 solution containing Fe(III) ions as oxidant was investigated by weight-loss, calorimetric measurements, and by surface-enhanced Raman spectroscopy (SERS). The SERS measurements show that the protective film is composed by the [Cu(I)BTA]n polymeric complex and that the BTAH molecules are also adsorbed on the electrode surface. A modification of the BET isotherm for adsorption of gases in solids is proposed to describe the experimental results obtained from weight-loss experiments that suggest an adsorption in multilayers. Electrochemical studies of copper and nickel in 0.5 mol L−1 H2SO4 in presence and absence of BTAH have also been made as an aid to interpret the results. The calculated adsorption free energy of the cuprous benzotriazolate on the surface of the alloy is in accordance with the value for pure copper.  相似文献   

2.
The potentiodynamic anodic polarization curve of α-brass (70% Cu-30% Zn) in 1 M LiBr solution showed an initial active region of the alloy dissolution followed by two well defined anodic current peaks then a narrow passivation region before the pitting potential (Epit) is reached. The initial active anodic region exhibited Tafel slope with 90 mV dec−1 attributed to the formation of CuBr2 complexes. The anodic current peaks were attributed to the formation of CuBr and Cu2+ ions, respectively. The change of pH values of LiBr solution did not affect the anodic polarization curves of α-brass. Increasing the solution temperature from 30 to 90 °C changed the corrosion type from pitting to general one. The addition of 10−2 M benzotriazole (BTAH) to 1 M LiBr solution is completely inhibited the pitting corrosion at 30 °C while it did not inhibit the pitting at 90 °C. The inhibition effect was attributed to the adsorption of BTAH molecules on the alloy surface, which obeys Langmuir isotherm. The presence or absence of pitting corrosion was confirmed by using SEM.  相似文献   

3.
采用析氢腐蚀实验比较了非晶合金Mg65Cu25Gd10和Mg65Cu20Ni5Gd10在1%NaCl溶液中腐蚀性能。利用电化学测试技术和场发射扫描电子显微镜(FESEM)对两非晶合金在NaCl溶液中的腐蚀行为进行了研究。析氢腐蚀实验表明,Ni的加入大大提高了非晶合金Mg65Cu25Gd10抗蚀性能,极化曲线测试结果也表明Mg65Cu20Ni5Gd10非晶合金的腐蚀电流远远小于Mg65Cu25Gd10非晶合金。EIS测试表明,电化学阻抗谱测试结果显示Mg65Cu20Ni5Gd10非晶合金电荷转移电阻高于Mg65Cu25Gd10非晶合金。腐蚀产物形貌观察表明,Ni的加入使非晶合金Mg65Cu20Ni5Gd10腐蚀表面膜更为致密。结合各测试结果,探讨了Ni的加入提高镁基非晶合金耐蚀性机理。  相似文献   

4.
The electrochemical behaviour of Cu-40Zn alloy, in 3% NaCl medium pure and polluted by 2 ppm of S2− ions, has been studied in the absence and presence of the 3-amino-1,2,4 triazole (ATA) as corrosion inhibitor. Electrochemical measurements (polarisation curves and electrochemical impedance spectroscopy) showed that sulphides accelerate the alloy corrosion. The studies revealed that ATA inhibits both cathodic and anodic reactions, indicating a mixed type of inhibition. The inhibiting effect was higher in presence of S2− ions than in its absence. Scanning electron microscopy analysis showed that the inhibitor acts by preventing the adsorption of S2− ions, and formation of Cu2S at the alloy surface. The inhibition efficiency reaches 98% at a concentration of 5 × 10−3 M.  相似文献   

5.
NiTi shape memory alloy has been modified by Nb implantation with different implantation parameters including incident dose and current. The surface morphology and chemical components are determined by atomic force microscopy (AFM), Auger Electron Spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The results show that Nb implantation leads to the formation of compact Nb2O5/TiO2 thin film about 30 nm in thickness on the surface of the NiTi alloy and decreases the surface concentration of Ni. A larger incident dose or incident current causes a higher surface roughness and a higher Nb content in the implantation layer of NiTi alloy. The nano-indentation measurements indicate the obvious reduction of both nano-hardness and Young's modulus of the Nb implanted NiTi alloy in the implantation layer and even in deeper NiTi matrix. The results of potentiodynamic polarization test show that the corrosion resistance of NiTi alloy in Hanks's solution has been evidently improved by Nb implantation. The NiTi alloy with a moderate implantation parameter of 1.5 × 1017 ions/cm2 and 2 mA exhibits the best corrosion resistance ability.  相似文献   

6.
The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.  相似文献   

7.
The corrosion susceptibility of alloy 33 in 0.5 mol/L sodium sulphate solutions containing or not 0.1 mol/L sodium chloride was tested at three different temperatures: 22 °C, 40 °C and 60 °C. Electrochemical studies were performed using corrosion potential measurements (Ecorr) as well as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Corrosion potential measurements showed that alloy 33 was passivated by a previously air formed film which was not destroyed during immersion in both solutions. No corrosion was observed during these tests although the temperature affected the film. Potentiodynamic polarization experiments showed that at high anodic potentials the previous film was broken up, and localized corrosion occurred in both solutions and at the three temperatures tested. Electrochemical impedance spectroscopy tests confirmed the presence of a stable passive film on the alloy surface at open circuit potential. Mott-Schottky analysis indicated that the passive film is an n-type semiconductor due to the presence of point defects of donor species, such as oxygen vacancies and interstitial metallic cations. As the potential increases the Cr(III) present in the barrier layer oxidizes producing Cr(VI) soluble species. The dissolution creates metallic cation vacancies that are acceptor species and the film changes from n-type to p-type semiconductor. The passive film rupture and the following localized attack are related to the drastic oxidative dissolution of the film at high anodic potentials, independent of its p-nature, chloride presence or increased temperature.  相似文献   

8.
This work aims to understand a SCC failure mode of thermally treated steam generator tubing materials in high temperature water containing lead. The effect of lead contents on the anodic polarization curves of alloy 600 (UNS NO6600) and alloy 690 (UNS NO6900) has been studied in a solution of pH 10 at 200 °C and 315 °C. Lead increased the active peaks of alloy 600 and alloy 690 in mild alkaline water at high temperatures. A reduction of PbO to a metallic lead in alloy 690 is easier than that of alloy 600. When lead was added into the solution, a relative ratio of Cr from among the main metallic elements (Cr, Fe, and Ni) of alloy 600 and alloy 690 decreased in the outer corrosion film. Alloy 690 TT showed a transgranular stress corrosion cracking (TGSCC) in a 10 M NaOH solution with 5000 ppm of lead. Intergranular stress corrosion racking (IGSCC) was observed in the 100 ppm lead condition, and some TGSCC was detected on the fracture surface of the alloy 600 MA cracked in the 10,000 ppm lead solution. IGSCC seemed to be retarded by a crack blunting around the grain boundaries, and the TG cracking mode of the thermally treated alloy 600 and 690 seemed to be related to a crack blunting at the grain boundary carbide and a film dissolution by lead in an alkaline solution.  相似文献   

9.
采用失重法、电化学测量和表面分析技术研究了有、无静磁场环境下,在含有硫酸盐还原菌(SRB)的培养基中HSn70-1铜合金的腐蚀行为。结果表明:SRB条件下,HSn70-1铜合金腐蚀质量损失最大,无磁场下的腐蚀电流密度远大于有磁场条件下的,磁场的加入可以有效地减缓HSn70-1铜合金的腐蚀。SEM,EDS,XRD和XPS实验分析表明,静磁场下HSn70-1铜合金表面腐蚀产物膜均匀致密,腐蚀产物为金属硫化物,Cu的化合价以一价(Cu+)为主;而无磁场时腐蚀产物疏松,腐蚀产物硫化物中Cu主要为二价(Cu2+)。静磁场条件下所形成的致密的Cu2S腐蚀产物层阻碍腐蚀的发生,有效地减缓了HSn70-1铜合金的腐蚀。  相似文献   

10.
Roles of β phase in the corrosion process of AZ91D magnesium alloy   总被引:1,自引:0,他引:1  
For better understanding of the roles of β phase in the corrosion processes of AZ91D alloy, corrosion behavior of a cast (α + β phase) and a homogenized (α phase) AZ91D alloy was investigated in NaCl aqueous solution by gas collection and electrochemical measurements. According to the hydrogen evolution properties during corrosion, two different types of corrosion tend might be differentiated. For type I, hydrogen diffused into alloy, which evoked the decreasing of hydrogen evolution rate (HER) and the weakening of negative difference effect (NDE). For type II, in the corrosion process, hydrogen in the alloys diffused into the product film (P-type semiconductor), which suggested that hydrogen entering the film would be ionized. The generated electrons during ionization decreased the concentration of vacancies in the valence band of the product films, indicating an improvement of corrosion resistance of AZ91D alloy.  相似文献   

11.
Palladium-copper alloy films (Cu 2.93-5.66 at.%) were deposited on 316L stainless steel by electroplating. The films showed good adhesive strength and increased surface micro-hardness. In boiling mixture of 90% acetic acid + 10% formic acid + 400 ppm Br under stirring (625 r/min), the Pd-Cu films showed better corrosion resistance than Pd film. The Pd-5.66%Cu films showed the lowest corrosion rate almost three orders of magnitude lower than that of 316L matrix. The increased corrosion resistance of Pd-Cu films was attributed to the improved passivity, better barrier effect, increased surface hardness and the effect of Cu to resist pitting.  相似文献   

12.
The formation of protective layers on copper, zinc and copper-zinc (Cu-10Zn and Cu-40Zn) alloys at open circuit potential in aerated, near neutral 0.5 M NaCl solution containing benzotriazole was studied using electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). Benzotriazole (BTAH), generally known as an inhibitor of copper corrosion, also proved to be an efficient inhibitor for copper-zinc alloys and zinc metal. The surface layers formed on alloys in BTAH-inhibited solution comprised both polymer and oxide components, namely Cu(I)BTA and Zn(II)BTA polymers and Cu2O and ZnO oxides, as proved by the in-depth profiling of the layers formed. A tentative structural model describing the improved corrosion resistance of Cu, Cu-xZn alloys and Zn in BTAH containing chloride solution is proposed.  相似文献   

13.
The corrosion of 70Cu‐30Ni alloy of incomplete recrystallization was investigated by electrochemical technique, intermittent and full immersion in natural seawater, SEM and AES. Exposed to seawater for a short time, 70Cu‐30Ni alloy formed uniform and compact corrosion product films, which were rich in nickel, oxygen and seawater species for intermittent immersion; while the alloy fully immersed displayed loose and thick films, which were of denickelification and intergranular corrosion occurred to the underlying substrate. It was found that some regular crystals situated at the intersection of boundaries or the outer layer of the film and the crystals are ascribed to the reduction of cuprous ions to compensate the deficiency of oxygen for the cathodic process. Intergranular corrosion was observed in the underlying substrate for intermittent immersion after a long‐term exposure. Intermittent immersion can, to some degree, slow down the corrosion but not prevent the alloy of incomplete recrystallization from intergranular corrosion. Consequently, the corrosion mechanism of 70Cu‐30Ni alloy is proposed to be determined by its microstructure, independent of exposure conditions.  相似文献   

14.
The corrosion behavior of Cu30Ni and 30-1-1 alloys in oxygen-containing chloride solutions (0.1–0.5 N NaCl) with and without Na2S additive (2–1000 mg/l) is studied with radiometric and electrochemical methods by taking into account the amount of oxygen sorbed in the course of corrosion. In blank solutions, a film of corrosion products is formed on the alloy surface; the thickness and copper content of the film increase with a decrease in chloride concentration. The corrosion rate in sulfide-containing solutions is higher than in sulfide-free ones. In the initial corrosion period, nickel compounds are accumulated in the film. With an increase in sodium sulfide concentration, corrosion accelerates. Additionally alloying the Cu30Ni alloy with manganese and iron reduces its rate by half.  相似文献   

15.
B. Zaid  D. Saidi  S. Hadji 《Corrosion Science》2008,50(7):1841-1847
Effects of pH solution and chloride (Cl) ion concentration on the corrosion behaviour of alloy AA6061 immersed in aqueous solutions of NaCl have been investigated using measurements of weight loss, potentiodynamic polarisation, linear polarisation, cyclic polarisation experiment combined with open circuit potential transient technique and optical or scanning electron microscopy.The corrosion behaviour of the AA6061 aluminum alloy was found to be dependant on the pH and chloride concentration [NaCl] of solution. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion. Experience revealed that the alloy AA6061 was susceptible to pitting corrosion in all chloride solution of concentration ranging between 0.003 wt% and 5.5 wt% NaCl and an increase in the chloride concentration slightly shifted both the pitting Epit and corrosion Ecor potentials to more active values. In function of the conditions of treatment, the sheets of the alloy AA6061 undergo two types of localised corrosion process, leading to the formation of hemispherical and crystallographic pits.Polarisation resistance measurements in acidic (pH = 2) and alkaline chloride solutions (pH = 12) which are in good agreement with those of weight loss, show that the corrosion kinetic is minimised in slightly neutral solutions (pH = 6).  相似文献   

16.
The electrochemical corrosion behaviour of Pb-free Sn-8.5Zn-0.05Al-XGa and Sn-3Ag-0.5Cu alloys was investigated in 3.5% NaCl solution by using potentiodynamic polarization techniques. The results obtained from polarization studies revealed that there was a negative shift in the corrosion potential with increase in Ga content from 0.02 to 0.2 wt% in the Sn-8.5Zn-0.05Al-XGa alloy. These changes were also reflected in the corrosion current density (Icorr) value, corrosion rate and linear polarization resistance (LPR) of the four element alloy. However, for Sn-3Ag-0.5Cu alloy a significant increase in the corrosion rate and corrosion current density was observed as compared to the four element alloys. SIMS depth profile results established that ZnO present on the outer surface of Sn-8.5Zn-0.05Al-0.05Ga alloy played a major role in the formation of the oxide film. Oxides of Sn, Al and Ga contributed a little towards the formation of film on the outer surface of the alloy. On the other hand, Ag2O was primarily responsible for the formation of the oxide film on the outer surface of Sn-3Ag-0.5Cu alloy.  相似文献   

17.
Copper-nickel alloys are reported to suffer accelerated corrosion in sulphide-polluted seawater. In the present study, the corrosion rates of 90 : 10 Cu : Ni alloy tube specimens and the characteristics of the surface corrosion products were determined for several environmental exposure histories. Some specimens were exposed only to de-aerated, sulphide-polluted seawater, some were exposed only to aerated, unpolluted seawater, and others were exposed first to polluted then to unpolluted seawater. In addition, preliminary experiments were performed to determine the effect of pH (7.0–8.2) on the corrosion rates of both 90 : 10 Cu : Ni and 70 : 30 Cu : Ni alloys in sulphide-polluted de-aerated seawater. The results support a previous prediction that the presence of dissolved sulphide in seawater does not lead immediately to accelerated corrosion but rather that the porous cuprous sulphide corrosion product formed in the polluted water interferes with the normal growth of the protective oxide film on subsequent exposure to unpolluted seawater. This interference with the oxide growth allows the initially high corrosion rate in aerated seawater to be maintained for an abnormally long period.  相似文献   

18.
Pure Ni and three Ni–Co alloys films, i.e. Ni–4 wt.%Co, Ni–18 wt.%Co, and Ni–40 wt.%Co, are electrodeposited at room temperature from the choline chloride/ethylene glycol deep eutectic solvent dissolved by nickel or/and cobalt chlorides. Electrodeposition mechanism, microstructure, and corrosion properties of the films are investigated. Surface morphology and chemical composite of the films are significantly dependent on the Ni2+ and Co2+ concentrations in the electrolytes. Interestingly, it is found that the amount of cobalt in the Ni–Co alloy films is significantly lower than that present in the electrolytes, which indicates an absence of anomalous codeposition process for the non-aqueous electrolytes. However, anomalous codeposition of Ni–Co deposits is frequently observed for the aqueous electrolytes. The Ni–Co alloy films possess face-centered cubic structures and refined grains revealed by X-ray diffractometer and scanning electron microscope. Potentiodynamic polarization measurements show that the Ni film exhibits the noblest corrosion potential and the lowest corrosion current compared with the Ni–Co alloys films. Moreover, the more Co content the Ni–Co films have, the more negative corrosion potential and the higher corrosion current the films exhibit.  相似文献   

19.
Electrochemical polarization measurements and slow strain rate tests (SSRT) of a 90Cu-10Ni alloy in highly sulfide polluted seawater were conducted to investigate stress-corrosion cracking (SCC) behavior. The severity of the SCC depends on the sulfide concentration in the seawater. The severity increases as the concentration increases. Because the major time in SCC is spent in the initiation process of the propagating crack, the fracture toughness has only a minor effect in the component life failed by SCC. The SCC behavior of CDA706 is strictly linked to sulfide concentration in the range of 100 to 1000 ppm. The general corrosion of Cu-Ni alloys in low (<100 ppm) and high (>100 ppm) sulfide polluted seawater increases due to the selective copper dissolution. Cyclic polarization measurements confirmed that the corrosion rate decreases slightly as the sulfide concentration increases. Pitting tendency was high in the low concentration range of sulfide and low in the high concentration range. The presence of stresses in SCC removes the protective layer as it increases during testing of the specimen or during the actual service of a component. The authors propose that film rupture occurred, and two proposed SCC mechanisms were operational, namely sulfide stress cracking associated with the anodic dissolution in the low sulfide concentration range and hydrogen embrittlement, which was dominant in the high sulfide concentration range. It was found that a synergism exists between sulfide and stress that enhances the effect of the latter.  相似文献   

20.
The effect of microstructure on corrosion behaviour of an Al-5.4 wt% Ni alloy fabricated by equal-channel angular pressing (ECAP) was investigated by means of potentiodynamic polarization test. The Al-5.4 wt% Ni alloy samples were severely deformed by ECAP with two strain introduction methods of route A and route BC and the ECAP process was repetitively carried out up to 6 passes (strain 6). The anodic polarization measurements indicated that pitting potential of the ECAPed Al-Ni alloy samples in chloride containing neutral buffer solution increased with ECAP passes. The pitting corrosion resistance of Al-Ni alloy after ECAP by route BC was better than that by route A. It is attributable to that the size of α-Al crystal region was reduced with ECAP passes and route BC was able to obtain more homogeneous α-Al/Al3Ni structure than route A. On the other hand, pitting corrosion resistance of pure Al samples showed an obvious declining with increasing ECAP passes. It was indicated that more homogeneous and finer α-Al/Al3Ni structure obtained by ECAP played a vital role on improving the corrosion resistance of Al-5.4 wt% Ni alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号