首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-entropy alloys (HEAs) are a newly developed family of multi-component alloys. The potentiodynamic polarization and electrochemical impedance spectroscopy of the AlxCrFe1.5MnNi0.5 alloys, obtained in H2SO4 and NaCl solutions, clearly revealed that the corrosion resistance increases as the concentration of aluminium decreases. The AlxCrFe1.5MnNi0.5 alloys exhibited a wide passive region, which extended >1000 mV in acidic environments. The Nyquist plots of the Al-containing alloys had two capacitive loops, which represented the electrical double layer and the adsorptive layer. SEM micrographs revealed that the general and pitting corrosion susceptibility of the HEAs increased as the amount of aluminium in the alloy increased.  相似文献   

2.
This work reports the preparation of glass-like, environmentally-friendly, cerium-based coatings for active corrosion protection of aluminium and magnesium alloys. It describes the production of cerium sol–gel sols from cerium nitrate and their deposition by immersion and automatic spray onto aluminium and magnesium alloys to produce uniform coatings with amorphous (glass-like) structures (CexOy). The coatings have been characterised by profilometry, scanning electron microscopy (SEM), spectral ellipsometry and UV–visible, in order to analyse the structure and density of the glass-like cerium coatings as well as their redox ratio Ce4+/Ce3+ as a function of pH and sintering temperature. Finally, electrochemical measurements (EIS) and standard corrosion tests (neutral salt spray, filiform corrosion, immersion–emersion test and adhesion on embossing and T-bend test) have been performed to study the corrosion behaviour of the cerium glass-like coatings on aluminium and magnesium alloys. EIS measurements confirm the healing or blocking of the defects by the corrosion inhibiting species. Excellent corrosion protection is provided by cerium glass-like coatings, satisfying the most demanding industrial requirements.  相似文献   

3.
Fe1−xMgx alloy films (with x ? 43.4 at.% Mg) were deposited by dc magnetron sputtering onto glass slide substrates. The objective of this study was to characterise the corrosion properties of these alloys in saline solution for application as new friendly environmentally sacrificial coatings in the protection of steel structures. The morphological and structural properties of the alloys were systematically studied prior to electrochemical experiments, and then the degraded surfaces were analysed to determine the composition and nature of corrosion products. Alloys with <25  at.% Mg were single-phase body-centred cubic (bcc) with enlarged lattice parameters, whereas for magnesium contents above 25 at.%, amorphisation occurred. The reactivity of the alloys in saline solution is strongly dependent on the Mg content and the alloy structure. The incorporation of magnesium leads to an open circuit potential shift of the alloy towards more negative values, that confers an attractive interest of these alloys as sacrificial coatings. A transition in corrosion activity is observed at 25 at.% Mg from which the reactivity decreases with the magnesium content increase. The evolution of the alloy corrosion behaviour is discussed in terms of structural and corrosion products evolution versus magnesium content.  相似文献   

4.
MoSx-based films were deposited using magnetron sputtering from a pure MoS2 target. Alloying was accomplished by “co-deposition” from separate targets onto substrates having a two-fold rotation. An additional experiment had also a Cr+-ion etch for surface preparation, followed by a Cr adhesion layer, made using a Cr target mounted on a cathodic arc evaporation source. MoSx and Al- and Ti-alloyed MoSx coatings have been deposited onto high speed steel (HSS) and glass substrates for corrosion investigations.The coatings were characterised by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, hardness and adhesion measurements. The corrosion behaviour of the samples was electrochemically measured by open-circuit-potential (OCP) measurements and by potentiodynamic corrosion tests in 0.8 M NaCl solution (pH 7). Additionally the MoSx-based coatings on HSS have been exposed to salt spray tests. The corrosion investigations revealed that the addition of Al and Ti to MoSx shifts the open-circuit-potential of about 80 to 110 mV to lower values, i.e. the alloying elements make the MoSx coating a little bit less noble. In agreement with the OCP measurements, the corrosion potential Ecorr in potentiodynamic corrosion tests was the highest for non-alloyed MoSx coatings on HSS substrates. After the potentiodynamic corrosion tests, a strong corrosive attack could be observed for all coated samples. In salt spray tests the lowest number of corrosion pits was found for the MoSx-Al (Cr+) coating on HSS.  相似文献   

5.
Plasma nitriding is a widely used technique for increasing the surface hardness of stainless steels, and consequently, for improving their tribological properties. It is also used to create an interface between soft stainless steel substrates and hard coatings to improve adhesion. This paper reports on the mechanical and corrosion properties of AISI301 stainless steel (SS) after a duplex treatment consisting of plasma nitriding followed by deposition of Cr bond coat and CrSiN top layer by magnetron sputtering. Mechanical properties of the deposited films, such as hardness (H) and reduced Young's modulus (Er), were measured using depth-sensing indentation. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were carried out to evaluate resistance to localized and to general corrosion, respectively. The corrosion behavior has been correlated with the microstructure and composition of the surface layers, determined by complementary characterization techniques, including XRD, SEM, and EDS. The CrSiN layers exhibited an H value of 24 GPa, whereas the nitrided layer was shown to present a gradual increase of H from 5 GPa (in the nitrogen-free SS matrix) to almost 14 GPa at the surface. The electrochemical measurements showed that the nitriding temperature is a critical parameter for defining the corrosion properties of the duplex-treated SS. At a relatively high temperature (723 K), the nitrided layer exhibited poor corrosion resistance due to the precipitation of chromium nitride compounds and the depletion of Cr in the iron matrix. This, in turn, leads to poor corrosion performance of the duplex-treated SS since pores and defects in the CrSiN film were potential sites for pitting. At relatively low nitriding temperature (573 K), the nitrided interface exhibited excellent corrosion resistance due to the formation of a compound-free diffusion layer. This is found to favor passivation of the material at the electrode/electrolyte interface of the duplex-treated SS.  相似文献   

6.
Pure Al and 6061 aluminium alloy based Al2O3 particle-reinforced composite coatings were produced on AZ91E substrates using cold spray. The strength of the coating/substrate interface in tension was found to be stronger than the coating itself. The coatings have corrosion resistance similar to that of bulk pure aluminium in both salt spray and electrochemical tests. The wear resistance of the coatings is significantly better than that of the AZ91 Mg substrate, but the significant result is that the wear rate of the coatings is several decades lower than that of various bulk Al alloys tested for comparison. The effect of post-spray heat treatment, the volume fraction of Al2O3 within the coating and of the type of Al powder used in the coatings on the corrosion and wear resistance was also discussed.  相似文献   

7.
Among the number of attractive properties that transition-metal diborides (TiB2, CrB2, etc.) possess, high resistance to wear and chemical inertness are the most important when considering diboride coatings for dry machining of nonferrous materials, such as aluminium and its alloys. Due mostly to the problematic deposition of chromium diboride (preparation of targets, target cracking during the deposition process, control of stoichiometry etc.), these coatings remain comparatively less studied than, for example, titanium diborides, regarding their tribological performance.In this paper we report on the tribological behaviour of pulsed magnetron sputtered (PMS), smooth and fully dense, crystalline, 21-38 GPa hard CrB2 coatings examined by reciprocating sliding wear testing in ambient air (20 ± 2 °C, 20-30% humidity) against EN AW-2017A aluminium alloy and AISI 52100 chrome steel. The results are compared to those of pulsed magnetron sputter deposited TiN and CrN coatings. It is demonstrated that pulsed magnetron sputtered chromium diboride coatings exhibit the best tribological performance, in terms of amount of aluminium adhered on the surface of the wear track, during testing against aluminium alloy. When slid against AISI 52100 steel PMS CrB2, CrN and TiN coatings exhibited coefficients of friction of 0.6, 0.6-0.7 and 0.43-0.45 respectively. The tribological behaviour of coatings was found to be dependent on the transfer film formation and its properties. Wear rates were up to ten times lower for pulsed magnetron sputtered CrB2 coatings, compared to DC sputtered Cr-B films.  相似文献   

8.
Laser alloying of aluminium alloys with chromium   总被引:2,自引:0,他引:2  
The microstructure and corrosion resistance of laser-alloyed aluminium and ANSI 7175 aluminium alloy with chromium were investigated. Surface layers alloyed with chromium contain relatively large amounts of intermetallic compounds dispersed in a matrix of -Al. The intermetallic compound particles present needle-like morphologies, organized in a dense network or distributed radially. Al7Cr, Al11Cr2 and -Al phases have been identified by X-ray diffraction. The alloyed layers may contain cracks, pores, inclusions and undissolved chromium particles, depending on the chromium concentration and the particle size. However, homogeneous layers were produced by a two-step process, consisting of laser alloying followed by remelting. The second treatment eliminates porosity and refines the structure. The hardness attains a Vickers hardness of 155 HV in chromium-alloyed aluminium and exceeds 300 HV in chromium-alloyed 7175. The corrosion behaviour of the above alloys was assessed using anodic polarization techniques. Laser alloying of aluminium and 7175 with chromium improves the pitting corrosion resistance of the alloys. The effect depends on the chromium content of the alloyed layers and is more significant in 7175 alloy.  相似文献   

9.
The morphology of pits in decorative nickel+chromium coatings resulting from service corrosion in an industrial atmosphere has been compared with that of pits produced in accelerated corrosion tests. Corrosion in the three accelerated tests examined and in the early stages of service corrosion was frequently characterised by formation of hemispherically shaped pits in the nickel layer: these occurred at discontinuities in the chromium top-coat. In the later stages of service corrosion, say, after several years’ exposure, pits were more often of irregular shape. In copper+nickel+chromium coatings, none of the accelerated tests gave close reproduction of the type of pit produced by corrosion in service. In double-layer nickel+chromium coatings, however, the type of pitting experienced in service was reasonably well reproduced by the acetic acid/salt spray and the Corrodkote tests, but not by the SO2 test. In order to obtain a better appreciation of the electrochemistry of the pitting corrosion observed, measurements were made of the anode polarisation characteristics of electrodeposited nickel and copper foils and of wrought steel, in electrolytes simulating those used in the accelerated corrosion tests. The results of these measurements are discussed in relation to the metallographic observations.  相似文献   

10.
A comparison was made between the electrochemical corrosion behaviors of chromium deposited from hexavalent [Cr(VI)] and trivalent [Cr(III)] chromium baths using direct current (DCD) and pulse electro deposited (PED) techniques. Chromium coatings were deposited on mild-steel (MS) substrate. The corrosion behavior of both DCD and PED chromium from Cr(VI) and Cr(III)-baths in 3.5%NaCl solution was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results indicated that PED chromium from Cr(VI) and Cr(III)-baths have higher charge-transfer resistance Rct and very low Icorr than that of DCD chromium on mild-steel substrate.  相似文献   

11.
As part of a programme to investigate the effect of ion implantation on the corrosion behaviour of iron, pure iron specimens have been implanted with doses of 5 × 1014 and 2 × 1015 chromium ions/mm2. Using a three-sweep potentiokinetic polarization technique the corrosion behaviour of these surface alloy layers has been compared with that of conventional binary FeCr alloys containing from 0.8 to 12.5 wt%Cr. It was found that apart from a slight thickening of the air-formed oxide film induced by the ion implantation process, the polarization behaviour of conventional alloys and of alloys produced by ion implantation was qualitatively very similar. Quantitatively the low dose chromium implanted specimens corresponded to a conventional Fe-4.9%Cr alloy while the high dose chromium implanted specimens resembled conventional alloys containing x12.5%Cr. These data provide a sound basis for the interpretation of the potentiokinetic polarization and corrosion behaviour of the novel surface alloy layers which can be produced by ion implantation.  相似文献   

12.
Ti/TiN multilayered coatings of 200 layers with the thickness of 1.5 μm were deposited by a reactive DC magnetron sputtering technique using a mixture of Ar and N2 gas. XRD technique was employed to elucidate the structural parameters. The presence of different phases like TiN, TiOxNy and TiO2 were confirmed by XPS analyses. The observation of longitudinal optic (LO) phonon modes in the Raman spectra confirmed the highly crystalline nature of the deposited films. A microhardness value of 25.5 GPa was observed for Ti/TiN multilayers. The observed lower friction coefficient value for the Ti/TiN multilayers on mild steel (MS) indicated that the stack layers have better wear resistance property. Results from the electrochemical polarization and impedance studies showed the favorable behavior of the Ti/TiN multilayers, which have improved the corrosion resistance property of MS in 3.5% NaCl solution. The results of this study demonstrate that these multilayers can improve the corrosion resistance of mild steel substrates.  相似文献   

13.
Corrosion performance, morphology, and electrochemical characteristics of cerium-based conversion coatings on Al 2024-T3 were examined as a function of phosphate post-treatment time and temperature. Corrosion resistance improved after post-treatment in 2.5 wt.% NH4H2PO4 for times up to 10 min or temperatures up to 85 °C. Electrochemical impedance spectroscopy and polarization testing correlated to neutral salt spray corrosion performance. Hydrated cerium oxide and peroxide species present in the as-deposited coatings were transformed to CePO4·H2O for post-treatments at longer times and/or higher temperatures. Based on these results, processes active during post-treatment are kinetically dependent and strongly influenced by the post-treatment time and temperature.  相似文献   

14.
HVOF-sprayed coatings (WC-17Co, WC-10Co-4Cr, Co-28Mo-17Cr-3Si) and electrolytic hard chrome (EHC) coatings corrosion resistances have been compared through electrochemical polarization tests (0.1 N HCl, 0.1 N HNO3) and Corrodkote test. EHC coatings passivate in HNO3, but undergo pitting corrosion in HCl and in Corrodkote test too. HVOF coatings do not passivate, but possess more noble corrosion potentials. Both in HNO3 and HCl, they undergo more generalized corrosion, with similar icorr; crevice corrosion along splat boundaries is sometimes detected after the HCl test. Their icorr in 0.1 N HCl solution is lower than in several of EHC coatings. No visible damage in the HVOF coatings has occurred after the Corrodkote test.  相似文献   

15.
The effects of hydrogen on the passivity and pitting susceptibility of type 316L stainless steels have been investigated with alloys containing different nitrogen contents (0.015, 0.198 and 0.556 wt.% N). The study revealed that electrochemically pre-charged hydrogen significantly reduced the pitting resistance of alloys conatining 0.015 and 0.198 wt.% nitrogen contents. In alloy with highest nitrogen content (0.556 wt.% N), an increase in the passive film current density with hydrogen was observed without affecting breakdown potential. Auger electron spectroscopy (AES) analysis of the passive film indicated the presence of nitrogen in the passive film. On other hand, for hydrogen charged samples, nitrogen was found to be significantly less in the passive film. In Electrochemical impedance spectroscopy (EIS) measurement, the decrease in semi-circle radius of Nyquist plot, and the polarization resistance, RP associated with the resistance of the passive film was observed with hydrogen, indicating that hydrogen decreased the stability of the passive film. The present investigation indicated that precharged hydrogen deteriorated the passive film stability and pitting corrosion resistance in these alloys, and the increase in nitrogen content of the alloy offsets the deleterious effect of precharged hydrogen.  相似文献   

16.
Corrosion Protection of Light Alloys Using Low Pressure Cold Spray   总被引:1,自引:0,他引:1  
Corrosion attack of aluminum- and magnesium-based alloys is a major issue worldwide. This study provides a report on the electrochemical behavior of several types of protective metal coatings obtained by low pressure cold spray (LPCS) and describes the performance of the latter’s corrosion resistance properties. In this manner several metal feedstock compositions were cold sprayed on AA2024-T3 Alclad substrate. Electrochemical methods, such as open circuit potential and potentiodynamic polarization, were used in combination with materials characterization techniques to assess the performance of LPCS protective coating layers. All sprayed samples were tested in the accelerated corrosion salt spray chamber for a time period of up to 500 h to obtain corrosion kinetics data, and with specific attention being focused on the characterization of the coating’s microstructural and mechanical properties. The overall conclusion of this study is that the LPCS process could be utilized to deposit corrosion protection coatings of light alloys as well as to repair aluminum and aluminum cladding structures during overhaul maintenance schedule in industry.  相似文献   

17.
The electrochemical corrosion behavior of Mg-5Al-0.4Mn-xNd (x = 0, 1, 2 and 4 wt.%) alloys in 3.5% NaCl solution was investigated. The corrosion behavior of the alloys was assessed by open circuit potential measure, potentiodynamic polarization, and electrochemical impedance spectroscopy. The electrochemical results show the intermetallic precipitates with Nd behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. During corrosion, Al2O3 and Nd2O3, in proper ratio, is incorporated into the corrosion film, and enhances the corrosion resistance.  相似文献   

18.
High-velocity oxy-fuel-sprayed FeCrMoMnWBCSi amorphous metallic coatings were sealed with sodium orthosilicate (Na3SiO4), aluminium phosphate (AlPO4), and cerium salt sealants. The microstructure of the sealed coatings was characterised by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. Corrosion behaviour was examined using electrochemical methods of potentiodynamic polarisation, cyclic polarisation, electrochemical impedance spectroscopy, and Mott-Schottky tests. The results indicated that the uniform corrosion resistance of the three sealed coatings was enhanced greatly, and the passive current densities were decreased by one order of magnitude after the sealing treatments. The AlPO4 sealant can penetrate the coatings by no less than 50 μm and enhance their hardness, which exhibited a more uniform corrosion resistance, fairly good pitting corrosion resistance, and can be applied in long-term corrosive and/or abrasive environments. The cerium salt-sealed coating showed better pitting corrosion resistance but inferior corrosion resistance in the local regions of micro-cracks, which was practically used for temporary corrosion protection. The Na3SiO4-sealed coating showed better uniform corrosion resistance and inferior pitting corrosion resistance, which can be applied in short-term corrosion environments. The stability of the passive film affected the corrosion behaviour of the sealed coatings. The AlPO4-sealed coating performed better as a protective passive film during the long-term immersion test for a lower defect concentration and a more protective passive film.  相似文献   

19.
采用磁控溅射方法在ZrCuAl非晶涂层中掺杂不同含量N,采用X射线衍射仪、扫描电子显微镜、透射电子显微镜、原子力显微镜等对涂层的显微结构进行表征,采用纳米压痕仪、显微硬度仪、划痕仪评估涂层的力学性能,通过极化试验评估涂层的抗腐蚀性能。结果表明,N掺杂可将涂层的硬度提高约3倍,弹性模量提高约2倍,结合力从1.51 N增加到22.76 N,但涂层的韧性有所下降。同时,N掺杂可使涂层发生钝化现象,提高涂层的耐腐蚀能力。当掺杂N原子数分数为35.8%时,涂层经极化试验后无点蚀现象,表面保持良好的形貌,无腐蚀迹象。因此,一定含量的N掺杂能同时提高Zr基非晶涂层的力学性能和耐蚀能力。  相似文献   

20.
NiCoCrAlYSiB coatings were deposited by arc ion plating (AIP) and annealed/pre-oxidised under various conditions. The corrosion behaviour of as-deposited and annealed/pre-oxidised coatings was studied by salt spray testing in a neutral mist of 5 wt% NaCl at 35 °C for 200 h. The results showed that the as-deposited NiCoCrAlYSiB coating behaved poorly while the annealed and pre-oxidised ones performed much better in salt spray tests. The dense microstructure in annealed coatings and formation of α-Al2O3 scales on the surface during pre-oxidation improved the corrosion resistance in salt spray test. The corrosion process was investigated from the aspects of corrosion products, and its electrochemical mechanism was proposed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号