首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laminar flame speed has traditionally been used for the partial validation of flame kinetics. In most cases, however, its accurate determination requires extensive data processing and/or extrapolations, thus rendering the measurement of this fundamental flame property indirect. Additionally, the presence of flame front instabilities does not conform to the definition of laminar flame speed. This is the case for Le<1 flames, with the most notable example being ultralean H2/air flames, which develop cellular structures at low strain rates so that determination of laminar flame speeds for such mixtures is not possible. Thus, this low-temperature regime of H2 oxidation has not been validated systematically in flames. In the present investigation, an alternative/supplemental approach is proposed that includes the experimental determination of extinction strain rates for these flames, and these rates are compared with the predictions of direct numerical simulations. This approach is meaningful for two reasons: (1) Extinction strain rates can be measured directly, as opposed to laminar flame speeds, and (2) while the unstretched lean H2/air flames are cellular, the stretched ones are not, thus making comparisons between experiment and simulations meaningful. Such comparisons revealed serious discrepancies between experiments and simulations for ultralean H2/air flames by using four kinetic mechanisms. Additional studies were conducted for lean and near-stoichiometric H2/air flames diluted with various amounts of N2. Similarly to the ultralean flames, significant discrepancies between experimental and predicted extinction strain rates were also found. To identify the possible sources of such discrepancies, the effect of uncertainties on the diffusion coefficients was assessed and an improved treatment of diffusion coefficients was advanced and implemented. Under the conditions considered in this study, the sensitivity of diffusion coefficients to the extinction response was found to be significant and, for certain species, greater than that of the kinetic rate constants.  相似文献   

2.
This work experimentally investigates the effect of the presence of water vapor on the laminar flame speeds of moist syngas/air mixtures using the counterflow twin-flame configuration. The experimental results presented here are for fuel lean syngas mixtures with molar percentage of hydrogen in the hydrogen and carbon monoxide mixture varying from 5% to 100%, for an unburned mixture temperature of 323 K, and under atmospheric pressure. At a given equivalence ratio, the effect of varying amount of water vapor addition on the measured laminar flame speed is demonstrated. The experimental laminar flame speeds are also compared with computed values using chemical kinetic mechanisms reported in the literature. It is found that laminar flame speed varies non-monotonically with addition of water for the carbon monoxide rich mixtures. It first increases with increasing amount of water addition, reaches a maximum value, and then decreases. An integrated reaction path analysis is further conducted to understand the controlling mechanism responsible for the non-monotonic variation in laminar flame speed due to water addition. On the other hand, for higher values of H2/CO ratio the laminar flame speed monotonically decreases with increasing water addition. It is shown that the competition between the chemical and thermal effects of water addition leads to the observed response. Furthermore, reaction rate sensitivity analysis as well as binary diffusion coefficient sensitivity analysis are conducted to identify the possible sources of discrepancy between the experimental and predicted values. The sensitivity results indicate that the reaction rate constant of H2 + OH = H2O + H is worth revisiting and refinement of binary diffusion coefficient data of N2–H2O, N2–H2, and H2–H2O pairs can be considered.  相似文献   

3.
Laminar flame speeds of iso-cetane/air and decalin/air mixtures were measured in the counterflow configuration at atmospheric pressure and an elevated unburned mixture temperature of 443 K. Axial flow velocities were measured along the stagnation streamline using the digital particle image velocimetry. The laminar flame speeds were determined by determining the variation of a reference flame speed as a function of strain rate and computationally assisted non-linear extrapolations. The data are the first to be reported in the literature, and they were modeled using a recently developed kinetic model that includes 187 species and 6086 elementary reactions. In general, the computed results were found to be in close agreement with the data. In order to get insight into kinetic effects on flame propagation, detailed sensitivity and reaction path analyses were performed using the computed flame structures. The results revealed that at the same equivalence ratio, laminar flame speeds of iso-cetane/air mixtures are lower than those of n-hexadecane/air mixtures. Additionally, it was found that the laminar flame speeds of iso-cetane/air and decalin/air mixtures are sensitive largely to C0–C4 kinetic subset, and that the lower reactivity of iso-cetane compared to n-hexadecane could be attributed to the higher production of relatively stable intermediates.  相似文献   

4.
Laminar flame speeds of lean premixed H2/CO/air mixtures were measured in the counterflow configuration over a wide range of H2 content at lean conditions. The values were determined by extrapolating the referenced flame speed to zero stretch rate using the non-linear extrapolation method to reduce the systematic error. Detailed calculation of laminar flame speed was also conducted using PREMIX code coupled with three different kinetic models. In general, simulation results agreed well with the experimental data. Both the experimental and calculation results revealed that the laminar flame speeds of lean premixed H2/CO/air mixtures increased with H2 content significantly when H2 content was small (?15%) and gradually when H2 content was large (>15%).  相似文献   

5.
The laminar flame speeds of H2/air with steam dilution (up to 33 vol%) were measured over a wide range of equivalence ratio (0.9–3.0) at atmospheric and elevated pressures (up to 5 atm) by an improved Bunsen burner method. Burke, Sun, HP (High Pressure H2/O2 mechanism), and Davis mechanisms were employed to calculate the laminar flame speeds and analyze different effects of steam addition. Four studied mechanisms all underestimated the laminar flame speeds of H2/air/H2O mixtures at medium equivalence ratios while the Burke mechanism provided the best estimates. When the steam concentration was lower than 12%, increasing pressure first increased and then decreased the laminar flame speed, the inflection point appeared at 2.5 atm. When the steam concentration was greater than 12%, increasing the pressure monotonously decrease the laminar flame speed. The chemical effect was amplified by elevated pressure and it played an important role for the inhibiting effect of the pressure on laminar flame speed. The fluctuations of the chemical effect at 1 atm were mainly caused by three-body reactions, while the turn at 5 atm was mainly caused by the direct reaction effect. Elevated pressure and steam addition amplified the influences of uncertainties in the rate constants for elementary reactions, which might leaded to the disagreement between experimental and simulation results.  相似文献   

6.
Laminar flame speeds of primary reference fuels and reformer gas mixtures   总被引:4,自引:0,他引:4  
The laminar flame speeds of neat primary reference fuels (PRFs), n-heptane and iso-octane, PRF blends, reformer gas, and reformer gas/iso-octane/air mixtures are measured over a range of equivalence ratios at atmospheric pressure, using counterflow configuration and digital particle image velocimetry (DPIV). PRF blends with various octane numbers are studied. The synthetic reformer gas mixture employed herein has a composition that would be produced from the partial oxidation of rich iso-octane/air mixture into CO and H2, namely, 28% H2, 25% CO, and 47% N2. Computationally, the experimentally determined laminar flame speeds are simulated using the detailed kinetic models available in the literature. Both experimental and computational results demonstrate that the flame speeds of hydrocarbon/air mixtures increase with addition of a small amount of reformer gas, and the flame speeds of reformer gas/air mixtures are dramatically reduced with addition of a small amount of hydrocarbon fuel. Furthermore, the number density effect of seeding particles on flame speed measurement is assessed, and the experimental uncertainties associated with the present DPIV setup as well as the linear extrapolation method employed herein are discussed.  相似文献   

7.
The laminar flame speeds of H2/CH4/air mixtures with CO2 and N2 dilution were systematic investigated experimentally and numerically over a wide range of H2 blending ratios (0–75 vol%) with CO2 (0–67 vol%) and N2 (0–67 vol%) dilution in the fuels. The experimental measurements were conducted via the Bunsen flame method incorporating the Schlieren technique under the condition of equivalence ratios from 0.8 to 2.0. To gain an insightful understanding of the experimental observations, detailed numerical simulation was carried out using Chemkin-Pro with GRI3.0-Mech. The experimental measurements were also used to validate the corresponding performance of a semiempirical correlation derived through asymptotic analysis method coupled with the reduced chemistry mechanism. The results showed that at lower H2 fraction (xH2 ≤ 0.5), the laminar flame speeds of H2/CH4/air mixtures displayed great linearly increase with the growth of H2 fractions. The combustion of mixtures with low H2 contents was dominated by CH4 conversion which was mainly controlled by the increasing OH radicals produced from the key oxidation reactions of H + O2 = O + OH. With the further increase of H2 fractions, the methane-dominated combustion gradually transformed into the methane-inhibited hydrogen combustion, resulting to the growth of laminar flame speeds was dramatical and non-linear. Due to the larger heat capacity and chemical kinetic effect, CO2 presented a stronger dilution effect on reducing the laminar flame speeds than N2. With the addition of CO2, the increasing stronger competition for H radical through CO + OH = CO2 + H with H + O2 = O + OH due to the significant reduction of H mole fractions, leading to the larger decrease of laminar flame speeds of mixtures. Besides, although the contribution of thermal effect of CO2 decreased near the equivalence ratio, the thermal effect of CO2 still preformed the dominated contribution to the total dilution effect. A comparison between the experimental data and estimated results using the semiempirical correlation showed that, the correlation using new modified coefficients provided the satisfactorily accuracy predictions on the laminar flame speeds of diluted H2/CH4/air mixtures at lower xH2 (xH2 ≤ 0.5) and lower xdilution (xdilution = 0.25). The estimated results were generally located within a deviation range of ±20% errors except for two unsatisfactory eases occurred at conditions of xH2 = 0.75 and xCO2 = 0.67. The considerably poor predictions were attributed to the significantly variation of the chemical kinetics under high H2 content and large CO2 dilution conditions.  相似文献   

8.
A relatively short kinetic mechanism (93 species and 729 reactions) was developed to predict the formation of poly-aromatic hydrocarbons (PAH) and their growth of up to five aromatic rings in methane and ethane-fueled flames. The model is based on the C0-C2 chemistry with recent well-established chemical kinetic data. Reaction paths for mostly stable and well studied PAH molecules were delineated and the reaction rate constants for PAH growth were collected. These were obtained by analysing the data reported in the literature during the last 30 years, or by using the estimates and optimisations of experimentally measured concentration profiles for small and PAH molecules. These profiles were collected by 12 independent work groups in laminar premixed CH4 and C2H4 flames under atmospheric pressure or in shock tube experiments under elevated pressure. The simulated flame speeds, temporal profiles of small and large aromatics and also soot particles volume fraction data are in good agreement with the experimental data received for different temperatures, mixing ratios and diluents. The extensive analysis of PAH reaction steps showed that the main reaction routes can be conditionally divided into “low temperature” reaction routes, dominating at T < 1550 K and “high temperature” reaction routes, which contribute mostly to PAH formation at T > 1550 K. The presented mechanism can be used as the basis for further extensions or reductions applied in kinetic schemes involving PAH and soot production in practical fuel combustion.  相似文献   

9.
i-Butanol (iC4H9OH) pyrolysis has been studied in a flow reactor with synchrotron vacuum ultraviolet photoionization mass spectrometry combined with molecular-beam sampling technique. The pyrolysis species were identified and their mole fractions were determined. Three pressures of 30, 150 and 760 Torr were selected to study the pressure effect of i-butanol chemistry. A detailed kinetic model consisting of 186 species and 1294 reactions was developed to simulate i-butanol high temperature chemistry. To enhance the accuracy, the model was further validated by the species profiles in shock tube pyrolysis, laminar premixed flames, oxidation data from jet-stirred reactor, ignition delay times, and flame speeds. Good agreement between the predicted and measured results was obtained.  相似文献   

10.
2-Butanol (sC4H9OH) pyrolysis has been studied in a flow reactor with the synchrotron vacuum ultraviolet photoionization mass spectrometry combined with the molecular-beam sampling technique. The pyrolysis species were identified and their mole fractions were determined. Four pressures of 5, 30, 150 and 760 Torr were selected to study the pressure dependence of 2-butanol pyrolysis chemistry. The temperature- and pressure-dependent rate constants of unimolecular reactions of 2-butanol were calculated with the RRKM/Master Equation method. With the help of theoretical calculations, a detailed kinetic model consisting of 160 species and 1038 reactions was developed to simulate the 2-butanol pyrolysis. It is concluded that the mole fractions of pyrolysis species are very sensitive to the 2-butanol unimolecular reaction rates. To enhance the accuracy, the model is further validated by the species profiles in shock tube pyrolysis, a rich laminar premixed flame, oxidation data from jet-stirred reactor, ignition delay times, and laminar flame speed. Good agreements between the predicted and measured results were obtained.  相似文献   

11.
Methylcyclohexane is the simplest alkylated cyclohexane, and has been broadly used as the representative cycloalkane component in fuel surrogates. Understanding its combustion chemistry is crucial for developing kinetic models of larger cycloalkanes and practical fuels. In this work, the synchrotron vacuum ultraviolet photoionization mass spectrometry combined with molecular-beam sampling was used to investigate the species formed during the pyrolysis of methylcyclohexane and in premixed flame of methylcyclohexane. A number of pyrolysis and flame intermediates were identified and quantified, especially including radicals (e.g. CH3, C3H3, C3H5 and C5H5) and cyclic C6- and C7-intermediates (benzene, 1,3-cyclohexadiene, cyclohexene, toluene, C7H10 and C7H12, etc.). In particular, the observation of cyclic C6- and C7-intermediates provides important experimental evidence to clarify the special formation channels of toluene and benzene which were observed with high concentrations in both pyrolysis and flame of methylcyclohexane. Furthermore, the rate constants of H-abstraction of methylcyclohexane via H attack, and the isomerization and decomposition of the formed cyclic C7H13 radicals were calculated in this work. A kinetic model of methylcyclohexane combustion with 249 species and 1570 reactions was developed including a new sub-mechanism of MCH. The rate of production and sensitivity analysis were carried out to elucidate methylcyclohexane consumption, and toluene and benzene formation under various pyrolytic and flame conditions. Furthermore, the present kinetic model was also validated by experimental data from literatures on speciation in premixed flames, ignition delays and laminar flame speeds.  相似文献   

12.
An updated H2/O2 reaction mechanism is presented that incorporates recent reaction rate determinations in shock tubes from our laboratory. These experiments used UV and IR laser absorption to monitor species time-histories and have resulted in improved high-temperature rate constants for the following reactions: H+O2=OH+OH2O2(+M)=2OH(+M)OH+H2O2=HO2+H2OO2+H2O=OH+HO2 The updated mechanism also takes advantage of the results of other recent rate coefficient studies, and incorporates the most current thermochemical data for OH and HO2. The mechanism is tested (and its performance compared to that of other H2/O2 mechanisms) against recently reported OH and H2O concentration time-histories in various H2/O2 systems, such as H2 oxidation, H2O2 decomposition, and shock-heated H2O/O2 mixtures. In addition, the mechanism is validated against a wide range of standard H2/O2 kinetic targets, including ignition delay times, flow reactor species time-histories, laminar flame speeds, and burner-stabilized flame structures. This validation indicates that the updated mechanism should perform reliably over a range of reactant concentrations, stoichiometries, pressures, and temperatures from 950 to greater than 3000 K.  相似文献   

13.
14.
《Combustion and Flame》2001,124(1-2):106-126
A detailed N/H reaction mechanism has been developed and validated by comparing modeling results with measurements of hydrazine pyrolysis in shock waves, and in hydrazine decomposition flames at low and atmospheric pressures. The mechanism consists of 51 reactions for 11 species. Rate constants for several decomposition reactions have been estimated employing updated thermodynamic data. Analysis of the reactions abstracting an H atom from NH3, NH2, NH and N2H4 from 1000 to 2000 K demonstrates that the Evans-Polanyi correlation holds for the radicals H, NH, and NH2. Probably it is also valid for the radicals N, NNH and N2H3. Several rate constants were estimated with this assumption. No further adjustment of the mechanism was attempted. The modeling correctly reproduces the experimental rate of decomposition of hydrazine and also the product distribution. The initial decomposition of N2H4 into two NH2 radicals and the subsequent reaction N2H4 + NH2 → NH3 + N2H3 mainly govern the decomposition of hydrazine in dilute mixtures and together with the reaction NH2 + NH2 → N2H2 + H2 control the propagation speed of a hydrazine flame. The computed speeds of such decomposition flames agree well with low-pressure and atmospheric pressure experiments for pure hydrazine and its mixtures with Ar, N2, H2O and NH3. Also the concentration profiles of major and minor species in low-pressure hydrazine flames are well reproduced. A sensitivity analysis identifies the critical reactions in particular experimental conditions. The choice of rate constants for key reactions and further development of the mechanism is discussed.  相似文献   

15.
Stretched laminar flame structures for a wide range of C3H8-air mixtures vs hot products are investigated by laser-based diagnostics and numerical simulation. The hot products are produced by a lean H2-air premixed flame. The effect of stretch rate and equivalence ratio on four groups of C3H8-air flame structures is studied in detail by Raman scattering measurements and by numerical calculations of the major species concentration and temperature profiles. The equivalence ratio, ?, is varied from a near-stoichiometric condition (?=0.86) to the sublean limit (?=0.44) and the stretch rate varies from 90 s−1 to near extinction. For most of these C3H8-air lean mixtures, hot products are needed to maintain the flame. The significant feature of these flames is the relatively low flame temperatures (1200-1800 K). For this temperature range, the predicted C3H8-air flame structure is sensitive to the specific chemical kinetic mechanism. Two types of flame structures (a lean self-propagating flame and a lean diffusion-controlled flame) are obtained based on the combined effect of stretch and equivalence ratio. Three different mechanisms, the M5 mechanism, the Optimized mechanism, and the San Diego mechanism, are chosen for the numerical simulations. None of the propane chemical mechanisms give good agreement with the data over the entire range of flame conditions.  相似文献   

16.
The effects of variations in the fuel composition on the characteristics of H2/CO/CH4/air flames of gasified biomass are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position and temperature are performed in the premixed stoichiometric H2/CO/CH4/air opposed-jet flames with various H2 and CO contents in the fuel. The adiabatic flame temperatures and laminar burning velocities are calculated using the EQUIL and PREMIX codes of Chemkin collection 3.5, respectively. Whereas the flame structures of the laminar premixed stoichiometric H2/CO/CH4/air opposed-jet flames are simulated using the OPPDIF package with the GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position and temperature of the stoichiometric H2/CO/CH4/air opposed-jet flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that the reaction rate of reactions (R38), (R46), and (R84) increase with increasing H2 content in the fuel mixture. It is also found that the increase in the laminar flame speed with H2 addition is most likely due to an increase in active radicals during combustion (chemical effect), rather than from changes in the adiabatic flame temperature (thermal effect). Chemical kinetic structure and sensitivity analyses indicate that for the stoichiometric H2/CO/CH4/air flames with fixed H2 concentration in the fuel mixture, the reactions (R99) and (R46) play a dominant role in affecting the laminar burning velocity as the CO content in the fuel is increased.  相似文献   

17.
The effect of acetone on the laminar flame speed of methane/air mixtures is investigated over a range of stoichiometries at atmospheric pressure and room temperature. The liquid acetone is vaporised and seeded into the methane/air mixture at 5%, 9% and 20% of the total fuel by mole. The experiment is performed using the jet-wall stagnation flame configuration and the particle imaging velocimetry (PIV) technique. Laminar flame speeds are derived by extrapolating the reference flame speed back to zero strain rate. Experimental results are compared to numerically calculated values using a base methane chemical kinetic mechanism (GRI-Mech 3.0) extended with acetone oxidation and pyrolysis reactions from the literature. The experimental results show that acetone addition does not affect the laminar flame speed of methane significantly within the range of concentrations considered, with a stronger effect on the rich range than under fuel-lean conditions, and that the peak laminar flame speed of acetone in air is ∼42.5 cm/s at ? = 1.2. Simulation results reveal that the most important reactions determining acetone laminar flame speeds are H + O2 → O + OH, OH + CO → H + CO2, HO2 + CH3 → OH + CH3O and H + O2 + H2O → HO2 + H2O. Comparison of the expected disappearance of acetone relative to methane shows that the former is a good fluorescent marker for the latter.  相似文献   

18.
The thermal and kinetic effects of O3 on flame propagation were investigated experimentally and numerically by using C3H8/O2/N2 laminar lifted flames. Ozone produced by a dielectric barrier plasma discharge was isolated and measured quantitatively by using absorption spectroscopy. Significant kinetic enhancement by O3 was observed by comparing flame stabilization locations with and without O3 production. Experiments at atmospheric pressures showed an 8% enhancement in the flame propagation speed for 1260 ppm of O3 addition to the O2/N2 oxidizer. Numerical simulations showed that the O3 decomposition and reaction with H early in the pre-heat zone of the flame produced O and OH, respectively, from which the O reacted rapidly with C3H8 and produced additional OH. The subsequent reaction of OH with the fuel and fuel fragments, such as CH2O, provided chemical heat release at lower temperatures to enhance the flame propagation speed. It was shown that the kinetic effect on flame propagation enhancement by O3 reaching the pre-heat zone of the flame for early oxidation of fuel was much greater than that by the thermal effect from the energy contained within O3. For non-premixed laminar lifted flames, the kinetic enhancement by O3 also induced changes to the hydrodynamics at the flame front which provided additional enhancement of the flame propagation speed. The present results will have a direct impact on the development of detailed plasma-flame kinetic mechanisms and provided a foundation for the study of combustion enhancement by O2(a1Δg) in part II of this investigation.  相似文献   

19.
An experimental study is conducted to investigate the effect of CO addition on the laminar flame characteristics of H2 and CH4 flames in a constant-volume combustion system. In addition, one-dimensional laminar premixed flame propagation processes at the same conditions are simulated with the update mechanisms. Results show that all mechanisms could well predict the laminar flame speeds of CH4/CO/O2/CO2 mixtures, when ZCO is large. For mixtures with lower CO, the experimental laminar flame speeds are always smaller than the calculated ones with Han mechanism. For mixtures with larger or smaller ZCO2, GRI 3.0, San diego and USC 2.0 mechanisms all overvalue or undervalue the laminar flame speeds. When CO ratio in the CH4/CO blended fuels increases, laminar flame speed firstly increases and then decreases for the CH4/CO/O2/CO2 mixtures. For H2/CO/O2/CO2 mixtures, San diego, Davis and Li mechanisms all undervalue the laminar flame speeds of H2/CO/CO2/CO2 mixtures. Existing models could not well predict the nonlinear trend of the laminar flame speeds, due to complex chemical effects of CO on CH4/CO or H2/CO flames. Then, the detailed thermal, kinetic and diffusive effects of CO addition on the laminar flame speeds are discussed. Kinetic sensitivity coefficient is far larger than thermal and diffusive ones and this indicates CO addition influences laminar flame speeds mainly by the kinetic effect. Based on this, radical pool and sensitivity analysis are conducted for CH4/CO/O2/CO2 and H2/CO/O2/CO2 mixtures. For CH4/CO/O2/CO2 mixtures, elementary reaction R38H + O2 ↔ O + OH and R99 OH + CO ↔ H + CO2 are the most important branching reactions with positive sensitivity coefficients when CO ratio is relative low. As CO content increases in the CH4/CO blended fuel, the oxidation of CO plays a more and more important role. When CO ratio is larger than 0.9, the importance of R99 OH + CO ↔ H + CO2 is far larger than that of R38H + O2 ↔ O + OH. The oxidation of CO dominates the combustion process of CH4/CO/O2/CO2 mixtures. For H2/CO/O2/CO2 mixtures, the most important elementary reaction with positive and negative sensitivity coefficients are R29 CO + OH ↔ CO2 + H and R13H + O2(+M) ↔ HO2(+M) respectively. The sensitivity coefficient of R29 CO + OH ↔ CO2 + H is increasing and then decreasing with the addition of CO in the mixture. Chemical kinetic analysis shows that the chemical effect of CO on the laminar flame propagation of CH4/CO/O2/CO2 and H2/CO/O2/CO2 mixtures could be divided into two stages and the critical CO mole fraction is 0.9.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号