首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present the system for maintaining the versions of two packages: the TAUOLA of τ-lepton decay and PHOTOS for radiative corrections in decays. The following features can be chosen in an automatic or semi-automatic way: (1) format of the common block HEPEVT; (2) version of the physics input (for TAUOLA): as published, as initialized by the CLEO collaboration, as initialized by the ALEPH collaboration (it is suggested to use this version only with the help of the collaboration advice), new optional parametrization of matrix elements in 4π decay channels; (3) type of application: stand-alone, universal interface based on the information stored in the HEPEVT common block including longitudinal spin effects in the elementary Z/γτ+τ process, extended version of the standard universal interface including full spin effects in the H/Aτ+τ decay, interface for KKMC Monte Carlo, (4) random number generators; (5) compiler options. The last section of the paper contains documentation of the programs updates introduced over the last two years.

Program summary

Title of program:tauola-photos-F, release IICatalogue identifier:ADXO_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXO_v1_0Programs obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandComputer: PC running GNU/Linux operating systemProgramming languages and tools used:CPP: standard C-language preprocessor, GNU Make builder tool, also FORTRAN compilerNo. of lines in distributed program, including test data, etc.: 194 118No. of bytes in distributed program, including test data, etc.:2 481 234Distribution format: tar.gzCatalogue identifier:ADXO_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXO_v2_0No. of lines in distributed program, including test data, etc.:308 235No. of bytes in distributed program, including test data, etc.:2 988 363Distribution format:tar.gzDoes the new version supersede the previous version:YesNature of the physical problem: The code of Monte Carlo generators often has to be tuned to the needs of large HEP Collaborations and experiments. Usually, these modifications do not introduce important changes in the algorithm, but rather modify the initialization and form of the hadronic current in τ decays. The format of the event record (HEPEVT common block) used to exchange information between building blocks of Monte Carlo systems often needs modification. Thus, there is a need to maintain various, slightly modified versions of the same code. The package presented here allows the production of ready-to-compile versions of TAUOLA [S. Jadach, Z. Wa?s, R. Decker, J.H. Kühn, Comput. Phys. Comm. 76 (1993) 361; A.E. Bondar, et al., Comput. Phys. Comm. 146 (2002) 139] and PHOTOS [E. Barberio, Z. Wa?s, Comput. Phys. Comm. 79 (1994) 291] Monte Carlo generators with appropriate demonstration programs. The new algorithm, universal interface of TAUOLA to work with the HEPEVT common block, is also documented here. Finally, minor technical improvements of TAUOLA and PHOTOS are also listed.Method of solution: The standard UNIX tool: the C-language preprocessor is used to produce a ready-to-distribute version of TAUOLA and PHOTOS code. The final FORTRAN code is produced from the library of ‘pre-code’ that is included in the package.Reasons for new version: The functionality of the version of TAUOLA and PHOTOS changed over the last two years. The changes, and their reasons, are documented in Section 9, and our new papers cited in this section.Additional comments: The updated version includes new features described in Section 9 of the paper. PHOTOS and TAUOLA were first submitted to the library as separate programs. Summary details of these previous programs are obtainable from the CPC Program Library.Typical running time: Depends on the speed of the computer used and the demonstration program chosen. Typically a few seconds.  相似文献   

3.
We describe SPICE: Simulation Package for Including Flavor in Collider Events. SPICE takes as input two ingredients: a standard flavor-conserving supersymmetric spectrum and a set of flavor-violating slepton mass parameters, both of which are specified at some high “mediation” scale. SPICE then combines these two ingredients to form a flavor-violating model, determines the resulting low-energy spectrum and branching ratios, and outputs HERWIG and SUSY Les Houches files, which may be used to generate collider events. The flavor-conserving model may be any of the standard supersymmetric models, including minimal supergravity, minimal gauge-mediated supersymmetry breaking, and anomaly-mediated supersymmetry breaking supplemented by a universal scalar mass. The flavor-violating contributions may be specified in a number of ways, from specifying charges of fields under horizontal symmetries to completely specifying all flavor-violating parameters. SPICE is fully documented and publicly available, and is intended to be a user-friendly aid in the study of flavor at the Large Hadron Collider and other future colliders.

Program summary

Program title: SPICECatalogue identifier: AEFL_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFL_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8153No. of bytes in distributed program, including test data, etc.: 67 291Distribution format: tar.gzProgramming language: C++Computer: Personal computerOperating system: Tested on Scientific Linux 4.xClassification: 11.1External routines: SOFTSUSY [1,2] and SUSYHIT [3]Nature of problem: Simulation programs are required to compare theoretical models in particle physics with present and future data at particle colliders. SPICE determines the masses and decay branching ratios of supersymmetric particles in theories with lepton flavor violation. The inputs are the parameters of any of several standard flavor-conserving supersymmetric models, supplemented by flavor-violating parameters determined, for example, by horizontal flavor symmetries. The output are files that may be used for detailed simulation of supersymmetric events at particle colliders.Solution method: Simpson's rule integrator, basic algebraic computation.Additional comments: SPICE interfaces with SOFTSUSY and SUSYHIT to produce the low energy sparticle spectrum. Flavor mixing for sleptons and sneutrinos is fully implemented; flavor mixing for squarks is not included.Running time: <1 minute. Running time is dominated by calculating the possible and relevant three-body flavor-violating decays of sleptons, which is usually 10-15 seconds per slepton.References:
[1]
B.C. Allanach, Comput. Phys. Commun. 143 (2002) 305, arXiv:hep-ph/0104145.
[2]
B.C. Allanach, M.A. Bernhardt, arXiv:0903.1805 [hep-ph].
[3]
A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38 (2007) 635, arXiv:hep-ph/0609292.
  相似文献   

4.
We present a FORTRAN90 program GCFP for the calculation of the generalized coefficients of fractional parentage (generalized CFPs or GCFP). The approach is based on the observation that the multi-shell CFPs can be expressed in terms of single-shell CFPs, while the latter can be readily calculated employing a simple enumeration scheme of antisymmetric A-particle states and an efficient method of construction of the idempotent matrix eigenvectors. The program provides fast calculation of GCFPs for a given particle number and produces results possessing numerical uncertainties below the desired tolerance. A single j-shell is defined by four quantum numbers, (e,l,j,t).A supplemental C++ program parGCFP allows calculation to be done in batches and/or in parallel.

Program summary

Program title:GCFP, parGCFPCatalogue identifier: AEBI_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBI_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 17 199No. of bytes in distributed program, including test data, etc.: 88 658Distribution format: tar.gzProgramming language: FORTRAN 77/90 (GCFP), C++ (parGCFP)Computer: Any computer with suitable compilers. The program GCFP requires a FORTRAN 77/90 compiler. The auxiliary program parGCFP requires GNU-C++ compatible compiler, while its parallel version additionally requires MPI-1 standard librariesOperating system: Linux (Ubuntu, Scientific) (all programs), also checked on Windows XP (GCFP, serial version of parGCFP)RAM: The memory demand depends on the computation and output mode. If this mode is not 4, the program GCFP demands the following amounts of memory on a computer with Linux operating system. It requires around 2 MB of RAM for the A=12 system at Ex?2. Computation of the A=50 particle system requires around 60 MB of RAM at Ex=0 and ∼70 MB at Ex=2 (note, however, that the calculation of this system will take a very long time). If the computation and output mode is set to 4, the memory demands by GCFP are significantly larger. Calculation of GCFPs of A=12 system at Ex=1 requires 145 MB. The program parGCFP requires additional 2.5 and 4.5 MB of memory for the serial and parallel version, respectively.Classification: 17.18Nature of problem: The program GCFP generates a list of two-particle coefficients of fractional parentage for several j-shells with isospin.Solution method: The method is based on the observation that multishell coefficients of fractional parentage can be expressed in terms of single-shell CFPs [1]. The latter are calculated using the algorithm [2,3] for a spectral decomposition of an antisymmetrization operator matrix Y. The coefficients of fractional parentage are those eigenvectors of the antisymmetrization operator matrix Y that correspond to unit eigenvalues. A computer code for these coefficients is available [4]. The program GCFP offers computation of two-particle multishell coefficients of fractional parentage. The program parGCFP allows a batch calculation using one input file. Sets of GCFPs are independent and can be calculated in parallel.Restrictions:A<86 when Ex=0 (due to the memory constraints); small numbers of particles allow significantly higher excitations, though the shell with j?11/2 cannot get full (it is the implementation constraint).Unusual features: Using the program GCFP it is possible to determine allowed particle configurations without the GCFP computation. The GCFPs can be calculated either for all particle configurations at once or for a specified particle configuration. The values of GCFPs can be printed out with a complete specification in either one file or with the parent and daughter configurations printed in separate files. The latter output mode requires additional time and RAM memory. It is possible to restrict the (J,T) values of the considered particle configurations. (Here J is the total angular momentum and T is the total isospin of the system.) The program parGCFP produces several result files the number of which equals to the number of particle configurations. To work correctly, the program GCFP needs to be compiled to read parameters from the standard input (the default setting).Running time: It depends on the size of the problem. The minimum time is required, if the computation and output mode (CompMode) is not 4, but the resulting file is larger. A system with A=12 particles at Ex=0 (all 9411 GCFPs) took around 1 sec on a Pentium4 2.8 GHz processor with 1 MB L2 cache. The program required about 14 min to calculate all 1.3×106 GCFPs of Ex=1. The time for all 5.5×107 GCFPs of Ex=2 was about 53 hours. For this number of particles, the calculation time of both Ex=0 and Ex=1 with CompMode = 1 and 4 is nearly the same, when no other processes are running. The case of Ex=2 could not be calculated with CompMode = 4, because the RAM memory was insufficient. In general, the latter CompMode requires a longer computation time, although the resulting files are smaller in size. The program parGCFP puts virtually no time overhead. Its parallel version speeds-up the calculation. However, the results need to be collected from several files created for each configuration.References:[1] J. Levinsonas, Works of Lithuanian SSR Academy of Sciences 4 (1957) 17.[2] A. Deveikis, A. Bon?kus, R. Kalinauskas, Lithuanian Phys. J. 41 (2001) 3.[3] A. Deveikis, R.K. Kalinauskas, B.R. Barrett, Ann. Phys. 296 (2002) 287.[4] A. Deveikis, Comput. Phys. Comm. 173 (2005) 186. (CPC Catalogue ID. ADWI_v1_0)  相似文献   

5.
We describe a C++ implementation of the Optimal Jet Definition for identification of jets in hadronic final states of particle collisions. We explain interface subroutines and provide a usage example. The source code is available from http://www.inr.ac.ru/~ftkachov/projects/jets/.

Program summary

Title of program: Optimal Jet Finder (v1.0 C++)Catalogue identifier: ADSB_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSB_v2_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandComputer: any computer with a standard C++ compilerTested with:
(1)
GNU gcc 3.4.2, Linux Fedora Core 3, Intel i686;
(2)
Forte Developer 7 C++ 5.4, SunOS 5.9, UltraSPARC III+;
(3)
Microsoft Visual C++ Toolkit 2003 (compiler 13.10.3077, linker 7.10.30777, option /EHsc), Windows XP, Intel i686.
Programming language used: C++Memory required:∼1 MB (or more, depending on the settings)No. of lines in distributed program, including test data, etc.: 3047No. of bytes in distributed program, including test data, etc.: 17 884Distribution format: tar.gzNature of physical problem: Analysis of hadronic final states in high energy particle collision experiments often involves identification of hadronic jets. A large number of hadrons detected in the calorimeter is reduced to a few jets by means of a jet finding algorithm. The jets are used in further analysis which would be difficult or impossible when applied directly to the hadrons. Grigoriev et al. [D.Yu. Grigoriev, E. Jankowski, F.V. Tkachov, Phys. Rev. Lett. 91 (2003) 061801] provide brief introduction to the subject of jet finding algorithms and a general review of the physics of jets can be found in [R. Barlow, Rep. Prog. Phys. 36 (1993) 1067].Method of solution: The software we provide is an implementation of the so-called Optimal Jet Definition (OJD). The theory of OJD was developed in [F.V. Tkachov, Phys. Rev. Lett. 73 (1994) 2405; Erratum, Phys. Rev. Lett. 74 (1995) 2618; F.V. Tkachov, Int. J. Modern Phys. A 12 (1997) 5411; F.V. Tkachov, Int. J. Modern Phys. A 17 (2002) 2783]. The desired jet configuration is obtained as the one that minimizes Ω, a certain function of the input particles and jet configuration. A FORTRAN 77 implementation of OJD is described in [D.Yu. Grigoriev, E. Jankowski, F.V. Tkachov, Comput. Phys. Comm. 155 (2003) 42].Restrictions on the complexity of the program: Memory required by the program is proportional to the number of particles in the input × the number of jets in the output. For example, for 650 particles and 20 jets ∼300 KB memory is required.Typical running time: The running time (in the running mode with a fixed number of jets) is proportional to the number of particles in the input × the number of jets in the output × times the number of different random initial configurations tried (ntries). For example, for 65 particles in the input and 4 jets in the output, the running time is ∼4⋅10−3 s per try (Pentium 4 2.8 GHz).  相似文献   

6.
This paper describe a package written in MATHEMATICA that automatizes typical operations performed during evaluation of Feynman graphs with Mellin-Barnes (MB) techniques. The main procedure allows to analytically continue a MB integral in a given parameter without any intervention from the user and thus to resolve the singularity structure in this parameter. The package can also perform numerical integrations at specified kinematic points, as long as the integrands have satisfactory convergence properties. It is demonstrated that, at least in the case of massive graphs in the physical region, the convergence may turn out to be poor, making naïve numerical integration of MB integrals unusable. Possible solutions to this problem are presented, but full automatization in such cases may not be achievable.

Program summary

Title of program: MBProgram summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYG_v1_0Catalogue identifier: ADYG_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandComputers: AllOperating systems: AllProgramming language used:MATHEMATICA, Fortran 77 for numerical evaluationMemory required to execute with typical data: Sufficient for a typical installation of MATHEMATICA.No. of lines in distributed program, including test data, etc.: 12 013No. of bytes in distributed program, including test data, etc.: 231 899Distribution format: tar.gzLibraries used:CUBA [T. Hahn, Comput. Phys. Commun. 168 (2005) 78] for numerical evaluation of multidimensional integrals and CERNlib [CERN Program Library, obtainable from: http://cernlib.web.cern.ch/cernlib/] for the implementation of Γ and ψ functions in Fortran.Nature of physical problem: Analytic continuation of Mellin-Barnes integrals in a parameter and subsequent numerical evaluation. This is necessary for evaluation of Feynman integrals from Mellin-Barnes representations.Method of solution: Recursive accumulation of residue terms occurring when singularities cross integration contours. Numerical integration of multidimensional integrals with the help of the CUBA library.Restrictions on the complexity of the problem: Limited by the size of the available storage space.Typical running time: Depending on the problem. Usually seconds for moderate dimensionality integrals.  相似文献   

7.
8.
9.
We have written the Exclusive Hadronic Monte Carlo Event (ExHuME) generator. ExHuME is based around the perturbative QCD calculation of Khoze, Martin and Ryskin of the process ppp+X+p, where X is a centrally produced colour singlet system.

Program summary

Title of program:ExHuMECatalogue identifier:ADYA_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYA_v1_0Program obtainable from:CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions:NoneProgramming language used:C++, some FORTRANComputer:Any computer with UNIX capability. Users should refer to the README file distributed with the source code for further detailsOperating system:Linux, Mac OS XNo. of lines in distributed program, including test data, etc.:111 145No. of bytes in distributed program, including test data, etc.: 791 085Distribution format:tar.gzRAM:60 MBExternal routines/libraries:LHAPDF [http://durpdg.dur.ac.uk/lhapdf/], CLHEP v1.8 or v1.9 [L. Lönnblad, Comput. Phys. Comm. 84 (1994) 307; http://wwwinfo.cern.ch/asd/lhc++/clhep/]Subprograms used:Pythia [T. Sjostrand et al., Comput. Phys. Comm. 135 (2001) 238], HDECAY [A. Djouadi, J. Kalinowski, M. Spira, HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Comm. 108 (1998) 56, hep-ph/9704448]. Both are distributed with the source codeNature of problem:Central exclusive production offers the opportunity to study particle production in a uniquely clean environment for a hadron collider. This program implements the KMR model [V.A. Khoze, A.D. Martin, M.G. Ryskin, Prospects for New Physics observations in diffractive processes at the LHC and Tevatron, Eur. Phys. J. C 23 (2002) 311, hep-ph/0111078], which is the only fully perturbative model of exclusive production.Solution method:Monte Carlo techniques are used to produce the central exclusive parton level system. Pythia routines are then used to develop a realistic hadronic system.Restrictions:The program is, at present, limited to Higgs, di-gluon and di-quark production. However, in principle it is not difficult to include more.Running time:Approximately 10 minutes for 10000 Higgs events on an Apple 1 GHz G4 PowerPC.  相似文献   

10.
Various extensions of the tanh-function method and their implementations for finding explicit travelling wave solutions to nonlinear partial differential equations (PDEs) have been reported in the literature. However, some solutions are often missed by these packages. In this paper, a new algorithm and its implementation called TWS for solving single nonlinear PDEs are presented. TWS is implemented in Maple 10. It turns out that, for PDEs whose balancing numbers are not positive integers, TWS works much better than existing packages. Furthermore, TWS obtains more solutions than existing packages for most cases.

Program summary

Program title:TWSCatalogue identifier:AEAM_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAM_v1_0.htmlProgram obtainable from:CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.:1250No. of bytes in distributed program, including test data, etc.:78 101Distribution format:tar.gzProgramming language:Maple 10Computer:A laptop with 1.6 GHz Pentium CPUOperating system:Windows XP ProfessionalRAM:760 MbytesClassification:5Nature of problem:Finding the travelling wave solutions to single nonlinear PDEs.Solution method:Based on tanh-function method.Restrictions:The current version of this package can only deal with single autonomous PDEs or ODEs, not systems of PDEs or ODEs. However, the PDEs can have any finite number of independent space variables in addition to time t.Unusual features:For PDEs whose balancing numbers are not positive integers, TWS works much better than existing packages. Furthermore, TWS obtains more solutions than existing packages for most cases.Additional comments:It is easy to use.Running time:Less than 20 seconds for most cases, between 20 to 100 seconds for some cases, over 100 seconds for few cases.References:[1] E.S. Cheb-Terrab, K. von Bulow, Comput. Phys. Comm. 90 (1995) 102.[2] S.A. Elwakil, S.K. El-Labany, M.A. Zahran, R. Sabry, Phys. Lett. A 299 (2002) 179.[3] E. Fan, Phys. Lett. 277 (2000) 212.[4] W. Malfliet, Amer. J. Phys. 60 (1992) 650.[5] W. Malfliet, W. Hereman, Phys. Scripta 54 (1996) 563.[6] E.J. Parkes, B.R. Duffy, Comput. Phys. Comm. 98 (1996) 288.  相似文献   

11.
Matrix elements of physical operators are required when the accurate theoretical determination of atomic energy levels, orbitals and radiative transition data need to be obtained for open-shell atoms and ions. The spin-angular part for these matrix elements is typically based on standard quantities such as matrix elements of the unit tensor, the (reduced) coefficients of fractional parentage as well as a number of other reduced matrix elements concerning various products of electron creation and annihilation operators. Therefore, in order to facilitate the access to the matrix elements of one- and two-particle scalar operators, we present here an extension to the Racah program for the full set of standard quantities and the pure spin-angular coefficients in LS- and jj-couplings. A flexible notation is introduced for defining and manipulating the electron creation and the electron annihilation operators. This will allow us to solve successfully various angular momentum problems in atomic physics.

Program summary

Title of program:RacahCatalogue number: ADURProgram summary URL:http://cpc.cs.qub.ac.uk/summaries/ADURProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: NoneComputers for which the program is designed: All computers with a valid license of the computer algebra package Maple [Maple is a registered trademark of Waterloo Maple Inc.]Installations: University of Kassel (Germany)Operating systems under which the program has been tested: Linux 8.1+Program language used:Maple, Release 8 and 9Memory required to execute with typical data: 30 MBNumber of lines in distributed program, including test data, etc.:36 875Number of bytes in distributed program, including test data, etc.: 1 104 604Distribution format: tar.gzNature of the physical problem: The accurate computation of atomic properties and level structures requires a good understanding and implementation of the atomic shell model and, hence, a fast and reliable access to its standard quantities. Apart from various coefficients of fractional parentage and the reduced matrix elements of the unit tensors, these quantities include the so-called spin-angular coefficients, i.e. the spin-angular parts of the many-electron matrix elements of physical operators, taken in respect of a basis of symmetry-adapted subshell and configuration state functions.Method of solution: The concepts of quasispin and second quantized (creation and annihilation) operators in a spherical tensorial form are used to evaluate and calculate the spin-angular coefficients of one- and two-particle physical operators [G. Gaigalas, Lithuanian J. Phys. 39 (1999) 79, http://arXiv.org/physics/0405078; G. Gaigalas, Z. Rudzikas, C. Froese Fischer, J. Phys. B: At. Mol. Phys. 30 (1997) 3747]. Moreover, the same concepts are applied to support the computation of the coefficients of fractional grandparentage, i.e. the simultaneous de-coupling of two electrons from a single-shell configuration. All these coefficients are now implemented consistently within the framework of the Racah program [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; G. Gaigalas, S. Fritzsche, B. Fricke, Comput. Phys. Comm. 135 (2001) 219].Restrictions on the complexity of the problem: In the present version of the Racah program, all spin-angular coefficients are restricted to the case of a single open shell. For the symmetry-adapted subshell states of such single-shell configurations, the spin-angular coefficients can be calculated for (tensorial coupled) one-particle operators of arbitrary rank as well as for scalar two-particle operators. As previously [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; G. Gaigalas, S. Fritzsche, B. Fricke, Comput. Phys. Comm. 135 (2001) 219], the Racah program supports all atomic shells with l?3 in LS-coupling (i.e. s-, p-, d- and f-shells) and all subshells with j?9/2 in jj-coupling, respectively.Unusual features of the program: From the very beginning, the Racah program has been designed as an interactive environment for the (symbolic) manipulation and computation of expressions from the theories of angular momentum and the atomic shell model. With the present extension of the program, we provide the user with a simple access to the coefficients of fractional grandparentage (CFGP) as well as to the spin-angular coefficients of one- and two-particle physical operators. To facilitate the specification of the tensorial form of the operators, a short but powerful notation has been introduced for the creation and annihilation operators as well as for the products of such operators as required for the development of many-body perturbation theory in a symmetry-adapted basis. All the coefficients and the matrix elements from above are equally supported for both LS- and jj-coupled operators and functions. The main procedures of the present extension are described below in Appendix B. In addition, a list of all available commands of the Racah program can be found in the file Racah-commands.ps which is distributed together with the code.Typical running time: The program replies promptly on most requests. Even large tabulations of standard quantities and pure spin-angular coefficients for one- and two-particle scalar operators in LS- and jj-coupling can be carried out in a few (tens of) seconds.  相似文献   

12.
In a recent paper I have introduced a package for the exact simulation of power-law noises and other colored noises [E. Milotti, Comput. Phys. Comm. 175 (2006) 212]: in particular, the algorithm generates 1/fα noises with 0<α?2. Here I extend the algorithm to generate 1/fα noises with 2<α?4 (black noises). The method is exact in the sense that it produces a sampled process with a theoretically guaranteed range-limited power-law spectrum for any arbitrary sequence of sampling intervals, i.e. the sampling times may be unevenly spaced.

Program summary

Title of program: PLNoiseCatalogue identifier:ADXV_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXV_v2_0.htmlLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandProgramming language used: ANSI CComputer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4Operating system: All operating systems capable of running an ANSI C compilerRAM: The code of the test program is very compact (about 60 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run with average list length 2⋅104, the RAM taken by the list is 200 KbytesExternal routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell: ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed., Cambridge Univ. Press., Cambridge, 1992, pp. 274-290]. Notice that ranlib requires a pair of routines from the linear algebra package LINPACK, and that the distribution of ranlib includes the C source of these routines, in case LINPACK is not installed on the target machine.No. of lines in distributed program, including test data, etc.:2975No. of bytes in distributed program, including test data, etc.:194 588Distribution format:tar.gzCatalogue identifier of previous version: ADXV_v1_0Journal reference of previous version: Comput. Phys. Comm. 175 (2006) 212Does the new version supersede the previous version?: YesNature of problem: Exact generation of different types of colored noise.Solution method: Random superposition of relaxation processes [E. Milotti, Phys. Rev. E 72 (2005) 056701], possibly followed by an integration step to produce noise with spectral index >2.Reasons for the new version: Extension to 1/fα noises with spectral index 2<α?4: the new version generates both noises with spectral with spectral index 0<α?2 and with 2<α?4.Summary of revisions: Although the overall structure remains the same, one routine has been added and several changes have been made throughout the code to include the new integration step.Unusual features: The algorithm is theoretically guaranteed to be exact, and unlike all other existing generators it can generate samples with uneven spacing.Additional comments: The program requires an initialization step; for some parameter sets this may become rather heavy.Running time: Running time varies widely with different input parameters, however in a test run like the one in Section 3 in the long write-up, the generation routine took on average about 75 μs for each sample.  相似文献   

13.
Many simulations of stochastic processes require colored noises: here I describe a small program library that generates samples with a tunable power-law spectral density: the algorithm can be modified to generate more general colored noises, and is exact for all time steps, even when they are unevenly spaced (as may often happen in the case of astronomical data, see e.g. [N.R. Lomb, Astrophys. Space Sci. 39 (1976) 447]. The method is exact in the sense that it reproduces a process that is theoretically guaranteed to produce a range-limited power-law spectrum 1/f1+β with −1<β?1. The algorithm has a well-behaved computational complexity, it produces a nearly perfect Gaussian noise, and its computational efficiency depends on the required degree of noise Gaussianity.

Program summary

Title of program: PLNoiseCatalogue identifier:ADXV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXV_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneProgramming language used: ANSI CComputer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4Operating system: All operating systems capable of running an ANSI C compilerNo. of lines in distributed program, including test data, etc.:6238No. of bytes in distributed program, including test data, etc.:52 387Distribution format:tar.gzRAM: The code of the test program is very compact (about 50 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run (like the one discussed in Section 4 in the long write-up) with average list length 2⋅104, the RAM taken by the list is 200 Kbytes.External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell, ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed., Cambridge Univ. Press, Cambridge, 1992, pp. 274-290]. Notice that ranlib requires a pair of routines from the linear algebra package LINPACK, and that the distribution of ranlib includes the C source of these routines, in case LINPACK is not installed on the target machine.Nature of problem: Exact generation of different types of Gaussian colored noise.Solution method: Random superposition of relaxation processes [E. Milotti, Phys. Rev. E 72 (2005) 056701].Unusual features: The algorithm is theoretically guaranteed to be exact, and unlike all other existing generators it can generate samples with uneven spacing.Additional comments: The program requires an initialization step; for some parameter sets this may become rather heavy.Running time: Running time varies widely with different input parameters, however in a test run like the one in Section 4 in this work, the generation routine took on average about 7 ms for each sample.  相似文献   

14.
An up-date of the Racah module is presented, adopted to Maple 11 and 12, which supports both, algebraic manipulations of expressions from Racah's algebra as well as numerical computations of many functions and symbols from the theory of angular momentum. The functions that are known to the program include the Wigner rotation matrices and n-j symbols, Clebsch-Gordan and Gaunt coefficients, spherical harmonics of various kinds as well as several others.

Program summary

Program title:RacahCatalogue identifier: ADFV_v10_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFV_v10_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 30 436No. of bytes in distributed program, including test data, etc.: 544 866Distribution format: tar.gzProgramming language: Maple 11 and 12Computer: All computers with a license for the computer algebra package Maple [1]Operating system: Suse Linux 10.2+ and Ubuntu 8.10Classification: 4.1, 5Catalogue identifier of previous version: ADFV_v9_0Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 616Does the new version supersede the previous version?: YesNature of problem: The theories of angular momentum and spherical tensor operators, sometimes known also as Racah's algebra, provide a powerful calculus for studying spin networks and (quantum) many-particle systems. For an efficient use of these theories, however, one requires not only a reliable handling of a large number of algebraic transformations and rules but, more often than not, also a fast access to their standard quantities, such as the Wigner n-j symbols, Clebsch-Gordan coefficients, spherical harmonics of various kinds, the rotation matrices, and many others.Solution method: A set of Maple procedures has been developed and maintained during the last decade which supports both, algebraic manipulations as well as fast computations of the standard expressions and symbols from the theory of angular momentum [2,3]. These procedures are based on a sizeable set of group-theoretical (and often rather sophisticated) relations which has been discussed and proven in the literature; see the monograph by Varshalovich et al. [4] for a comprehensive compilation. In particular the algebraic manipulation of complex (Racah) expressions may result in considerable simplifications, thus reducing the ‘numerical costs’, and often help obtain further insight into the behaviour of physical systems.Reasons for new version: A revision of the Racah module became necessary for mainly three reasons: (i) Since the last extension of the Racah procedures [5], which was developed within the framework of Maple 8, several updates of Maple were distributed by the vendors (currently Maple 13) and required a number of adaptations to the source code; (ii) the increasing size and program structure of the Racah module made it advisible to separate the (procedures for the treatment of the) atomic shell model from the manipulation and computation of Racah expressions. Therefore, the computation of angular coefficients for different coupling schemes, (grand) coefficients of fractional parentage as well as the matrix elements (of various irreducible tensors from the shell model) is to be maintained from now on independently within the Jucys module; (iii) a number of bugs and inconsistencies have been reported to us and corrected in the present version.Summary of revisions: In more detail, the following changes have been made:
1.
Since recent versions of Maple now support the automatic type checking of all incoming arguments and the definition of user-defined types; we have adapted most of the code to take advantage of these features, and especially those commands that are accessible by the user.
2.
In the computation of the Wigner n-j symbols and Clebsch-Gordan coefficients, we now return a ‘0’ in all cases in which the triangular rules are not fulfilled, for example, if δ(a,b,c)=0 for or . This change in the program saves the user making these tests on the quantum numbers explicitly everytime (in the summation over more complex expressions) that such a symbol or coefficient is invoked. The program still terminates with an error message if the (half-integer and integer) angular momentum quantum numbers appear in an inproper combination.
3.
While a recursive generation of the Wigner 3-j and 6-j symbols [6] may reduce the costs of some computations (and has thus been utilized in the past), it also makes the program rather sophisticated, especially if an algebraic evaluation or computations with a high number of Digits need to be supported by the same generic commands. The following procedures are therefore no longer supported by the Racah module:Racah_compute_w3j_jrange(), Racah_compute_w3j_mrange(),Racah_compute_w3j_recursive(), Racah_compute_w6j_range(), andRacah_compute_w6j_recursive().On most PCs, a sequential computation of all requested symbols is carried out within the same time basically.
4.
Because the module Jucys has grown to a size of about 35,000 lines of code and data, it appears helpful and necessary to maintain it independently. The procedures from the Jucys modules were designed to facilitate the computation of matrix elements of the unit tensors, the coefficients of fractional parentage (of various types) as well as transformation matrices between different coupling schemes [7] and are, thus, independent of the Racah module (although they typically require that the Racah code is available). The Jucys module is no longer distributed together with the present code.
5.
Apart from the Wigner n-j symbols (see above), some minor bugs have been reported and corrected in Racah_expand() and Racah_set().
6.
To facilitate the test of the installation and as a first tutorial on the module, we now provide the Maple worksheet Racah-tests-2009-maple12.mw in the Racah2009 root directory. This worksheet contains the examples and test cases from the previous versions. For the test of the installation, it is recommended that a ‘copy’ of this worksheet is saved and compared to the results from the re-run. It can be used also as a helpful source to define new examples in interactive work with the Racah module.
The Racah module is distributed in a tar file ADFV_v10_0.tar.gz from which the RACAH2009 root directory is (re-)generated by the command tar -zxvf ADFV_v10_0.tar.gz. This directory contains the source code libraries (tested for Maple 11 and 12), a Read.me for the installation of the program, the worksheet Racah-tests-2009-maple12.mw as well as the document Racah-commands-2009.pdf. This .pdf document serves as a Short Reference Manual and provides the definition of all the data structures of the Racah program together with an alphabetic list of all user relevant (and exported) commands. Although emphasis was placed on preserving the compatibility of the program with earlier releases of Maple, this cannot always be guaranteed due to changes in the Maple syntax. The Racah2009 root also contains an example of a .mapleinit file that can be modified and incorporated into the user's home directory to make the Racah module accessible like any other module of Maple. As mentioned above, the worksheet Racah-tests-2009-maple12.mw, help test the installation and may serve as a first tutorial.Restrictions: The (Racah) program is based on the concept of Racah expressions [cf. Fig. 1 in Ref. [4]] which, in principle, may contain any number of Wigner n-j symbols (n?9), Clebsch-Gordan coefficients, spherical harmonics and/or rotation matrices. In practise, of course, the required time and the success of an evaluation procedure depends on the complexity of the expressions and on the storage available, sometimes also on Maple's internal garbage treatment. In some cases, it is advisable to attempt first a simplification of the magnetic quantum numbers for a given expression before the summation over further 6-j and 9-j symbols should be taken into account. For all other quantities (that are compiled in Ref. [8], Tables 1 and 2, and explained in more detail in the Short Reference Manual, Racah-commands-2009.pdf), we currently just facilitate fast numerical computations by exploiting, as far as possible, Maple's hardware floating-point model. The program also supports simplifications on the Wigner rotation matrices. In integrals over the rotation matrices, products of up to three Wigner D-functions or reduced matrices (with the same angular arguments) are recognized; for the integration over a solid angle, however, the domain of integration must be specified explicitly for the Euler angles α and γ in order to force Maple to generate a constant of integration. In the course of the evaluation of Racah expressions, it is, in practice, often difficult to check internally whether all substructures of an expression are defined properly. Therefore, the user must ensure that all angular momenta (if given explicitly) must finally evaluate to integer and half-integer values and that they satisfy proper coupling conditions.Unusual features: The Racah program is designed for interactive use and for providing a quick and algebraic evaluation of (complex) expressions from Racah's algebra. In the evaluation, it exploits a large set of sum rules which are known from Racah's algebra and which may include (multiple) summations over dummy indices; see Varshalovich et al. [5] for a more detailed account of the theory. One strength of the program is that it recognizes automatically the symmetries of the symbols and functions, and that it applies also (some of) the graphical rules due to Yutsis and coworkers [9]. As before, the result of the evaluation process will be provided as Racah expressions, if a further simplification could be achieved, and may hence be used for further derivations and calculations within the given framework. In dealing with recoupling coefficients, these coefficients can be entered simply as a string of angular momenta (variables), separated by commas, and very similar to how they appear in mathematical texts. This is a crucial advantage of the program, compared with previous developments, for which the angular momenta and coupling coefficients had often to be given in a very detailed format. A Short Reference Manual to all procedures of the Racah program is provided by this distribution; it also contains the worksheet Racah-tests-2009-maple12.mw that contains the examples from all previous versions and may help test the installation. This worksheet can serve as a first tutorial to the Racah procedures. In the past, the Racah program has been utilized extensively in a number of applications including angular and polarization studies of heavy ions [10], angular distributions and correlation functions following photon-induced excitation processes [11], entanglement studies [12], in application of point-group symmetries and several others.Running time: The worksheet supplied with the distribution takes about 1 minute to run.References:
[1] Maple is a registered trademark of Waterloo Maple Inc.
[2] S. Fritzsche, Comp. Phys. Commun. 103 (1997) 51.
[3] S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comp. Phys. Commun. 111 (1998) 167;
T. Ingho, S. Fritzsche, B. Fricke, Comp. Phys. Commun. 139 (2001) 297;
S. Fritzsche, T. Ingho, T. Bastug, M. Tomaselli, Comp. Phys. Commun. 139 (2001) 314.
[4] D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore a.o., 1988.
[5] J. Pagaran, S. Fritzsche, G. Gaigalas, Comp. Phys. Commun. 174 (2006) 616.
[6] K. Schulten, R.G. Gordon, Comp. Phys. Commun. 11 (1976) 269.
[7] G. Gaigalas, S. Fritzsche, B. Fricke, Comp. Phys. Commun. 135 (2001) 219;
G. Gaigalas, S. Fritzsche, Comp. Phys. Commun. 149 (2002) 39;
G. Gaigalas, O. Scharf, S. Fritzsche, Comp. Phys. Commun. 166 (2005) 141.
[8] S. Fritzsche, T. Ingho, M. Tomaselli, Comp. Phys. Commun. 153 (2003) 424.
[9] A.P. Yutsis, I.B. Levinson, V.V. Vanagas, The Theory of Angular Momentum, Israel Program for Scientific Translation, Jerusalem, 1962.
[10] S. Fritzsche, P. Indelicato, T. Stöhlker, J. Phys. B 38 (2005) S707.
[11] M. Kitajima, M. Okamoto, M. Hoshino, et al., J. Phys. B 35 (2002) 3327;
N.M. Kabachnik, S. Fritzsche, A.N. Grum-Grzhimailo, et al., Phys. Reports 451 (2007) 155;
S. Fritzsche, A.N. Grum-Grzhimailo, E.V. Gryzlova, N.M. Kabachnik, J. Phys. B 41 (2008) 165601;
T. Radtke, et al., Phys. Rev. A 77 (2008) 022507.
[12] T. Radtke, S. Fritzsche, Comp. Phys. Commun. 175 (2006) 145.
  相似文献   

15.
Computer codes are developed to calculate Clebsch-Gordan coefficients of SU(3) in both SU(2)- and SO(3)-coupled bases. The efficiency of this code derives from the use of vector coherent state theory to evaluate the required coefficients directly without recursion relations. The approach extends to other compact semi-simple Lie groups. The codes are given in subroutine form so that users can incorporate the codes into other programs.

Program summary

Title of program: SU3CGVCSCatalogue identifier: ADTNProgram summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTNProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: Persons requesting the program must sign the standard CPC non-profit use licenseComputers for which the program is designed and others on which it is operable: SGI Origin 2000, HP Apollo 9000, Sun, IBM SP, PentiumOperating systems under which the program has been tested: IRIX 6.5, HP UX 10.01, SunOS, AIX, LinuxProgramming language used: FORTRAN 77Memory required to execute with typical data: On the HP system, it requires about 732 KBytes.Disk space used for output: 2100+2460 bytesNo. of bits in a word: 32 bit integer and 64 bit floating point numbers.No. of processors used: 1Has the code been vectorized: NoNo. of bytes in distributed program, including test data, etc.: 26 309No. of lines in distributed program, including test data, etc.: 3969Distribution format: tar gzip fileNature of physical problem: The group SU(3) and its Lie algebra have important applications, for example, in elementary particle physics, nuclear physics, and quantum optics [1-3]. The code presented is particularly relevant for the last two fields. Clebsch-Gordan (CG) coefficients are required whenever the symmetries of many-body systems are used for the evaluation of matrix elements of tensor operators. Moreover, the construction of CG coefficients for SU(3) serves as a nontrivial prototype for larger compact semi-simple Lie algebras and even for non semi-simple Lie algebras. It is the simplest Lie algebra to have multiplicity in its outer products and a non-canonical subalgebra, i.e., SO(3).Method of solution: Vector coherent state theory is first used to construct bases for the products of two irreducible representations (irreps) [4]. The bases are SU(2)-coupled so that SU(2)-reduced CG (or isoscalar factors) can be constructed naturally. The CG coefficients in the SO(3) bases are constructed subsequently from the overlaps between the SU(2) and SO(3) bases.Restriction on the complexity of the problem: The programs are limited by computer memory and the maximum size of variable arrays. As dimension overflow conditions are possible, they are flagged and can be fixed by following the directions given as part of the error message.Typical running time: The calculation time for a single SU(3) CG coefficient is very different for SU(2) and SO(3) bases. It varies between 7.3-54.1 ns in SGI Origin 2000, 0.81-5.48 ms in HP Apollo 9000, or 0.055-0.373 ms in Intel Pentium 4 for SU(2) bases while it is between 0.027-0.255 s in Intel Pentium 4 for SO(3) bases.Unusual features of the program: Intrinsic bit functions: and, or, and shift, called iand, ior, and ishft, respectively, in FORTRAN, are used for packing and unpacking the labels for the irreps. Intrinsic logical btest is used to test the bit for the phase factor.References:[1] Y. Ne'eman, Nucl. Phys. 26 (1961) 222;  M. Gell-Man, Y. Ne'eman, The Eightfold Way, Benjamin, New York, 1964.[2] J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128, 562.[3] M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Phys. Rev. Lett. 73 (1994) 58;  B.C. Sanders, H. de Guise, D.J. Rowe, A. Mann, J. Phys. A 32 (1999) 7111.[4] D.J. Rowe, C. Bahri, J. Math. Phys. 41 (2000) 6544.  相似文献   

16.
We describe SuperIso Relic, a public program for evaluation of relic density and flavor physics observables in the minimal supersymmetric extension of the Standard Model (MSSM). SuperIso Relic is an extension of the SuperIso program which adds to the flavor observables of SuperIso the computation of all possible annihilation and coannihilation processes of the LSP which are required for the relic density calculation. All amplitudes have been generated at the tree level with FeynArts/FormCalc, and widths of the Higgs bosons are computed with FeynHiggs at the two-loop level. SuperIso Relic also provides the possibility to modify the assumptions of the cosmological model, and to study their consequences on the relic density.

Program summary

Program title: SuperIso RelicCatalogue identifier: AEGD_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGD_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: yesNo. of lines in distributed program, including test data, etc.: 2 274 720No. of bytes in distributed program, including test data, etc.: 6 735 649Distribution format: tar.gzProgramming language: C (C99 Standard compliant) and FortranComputer: 32- or 64-bit PC, MacOperating system: Linux, MacOSRAM: 100 MbClassification: 1.9, 11.6External routines: ISASUGRA/ISAJET and/or SOFTSUSY, FeynHiggsDoes the new version supersede the previous version?: No (AEAN_v2_0)Nature of problem: Calculation of the lightest supersymmetric particle relic density, as well as flavor physics observables, in order to derive constraints on the supersymmetric parameter space.Solution method: SuperIso Relic uses a SUSY Les Houches Accord file, which can be either generated automatically via a call to SOFTSUSY or ISAJET, or provided by the user. This file contains the masses and couplings of the supersymmetric particles. SuperIso Relic then computes the lightest supersymmetric particle relic density as well as the most constraining flavor physics observables. To do so, it calculates first the widths of the Higgs bosons with FeynHiggs, and then it evaluates the squared amplitudes of the diagrams needed for the relic density calculation. These thousands of diagrams have been previously generated with the FeynArts/FormCalc package. SuperIso Relic is able to perform the calculations in different supersymmetry breaking scenarios, such as mSUGRA, NUHM, AMSB and GMSB.Reasons for new version: This version incorporates the calculation of the relic density, which is often used to constrain Supersymmetry.Summary of revisions:
Addition of the relic density calculation
Replacement of "float" type by "double".
Unusual features: SuperIso Relic includes the possibility of altering the underlying cosmological model and testing the influence of the cosmological assumptions.Additional comments: This program is closely associated with the "SuperIso" program - CPC Program Library, Catalogue Id. AEAN.Running time:Compilation time: a couple of hours for the statically linked version, a few minutes for the dynamically linked version. Running time: about 1 second, or a few seconds if libraries need to be compiled on the fly.  相似文献   

17.
We present the Mathematica package HypExp which allows to expand hypergeometric functions around integer parameters to arbitrary order. At this, we apply two methods, the first one being based on an integral representation, the second one on the nested sums approach. The expansion works for both symbolic argument z and unit argument. We also implemented new classes of integrals that appear in the first method and that are, in part, yet unknown to Mathematica.

Program summary

Title of program:HypExpCatalogue identifier:ADXF_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXF_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicence:noneComputers:Computers running Mathematica under Linux or WindowsOperating system:Linux, WindowsProgram language:MathematicaNo. of bytes in distributed program, including test data, etc.:739 410No. of lines in distributed program, including test data, etc.:89 747Distribution format:tar.gzOther package needed:the package HPL, included in the distributionExternal file required:noneNature of the physical problem:Expansion of hypergeometric functions around integer-valued parameters. These are needed in the context of dimensional regularization for loop and phase space integrals.Method of solution:Algebraic manipulation of nested sums and integral representation.Restrictions on complexity of the problem:Limited by the memory availableTypical running time:Strongly depending on the problem and the availability of libraries.  相似文献   

18.
Reduze is a computer program for reducing Feynman integrals to master integrals employing a Laporta algorithm. The program is written in C++ and uses classes provided by the GiNaC library to perform the simplifications of the algebraic prefactors in the system of equations. Reduze offers the possibility to run reductions in parallel.

Program summary

Program title:ReduzeCatalogue identifier: AEGE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions:: yesNo. of lines in distributed program, including test data, etc.: 55 433No. of bytes in distributed program, including test data, etc.: 554 866Distribution format: tar.gzProgramming language: C++Computer: AllOperating system: Unix/LinuxNumber of processors used: The number of processors is problem dependent. More than one possible but not arbitrary many.RAM: Depends on the complexity of the system.Classification: 4.4, 5External routines: CLN (http://www.ginac.de/CLN/), GiNaC (http://www.ginac.de/)Nature of problem: Solving large systems of linear equations with Feynman integrals as unknowns and rational polynomials as prefactors.Solution method: Using a Gauss/Laporta algorithm to solve the system of equations.Restrictions: Limitations depend on the complexity of the system (number of equations, number of kinematic invariants).Running time: Depends on the complexity of the system.  相似文献   

19.
Vscape is an interactive tool for studying the one-loop effective potential of an ungauged supersymmetric model of chiral multiplets. The program allows the user to define a supersymmetric model by specifying the superpotential. The F-terms and the scalar and fermionic mass matrices are calculated symbolically. The program then allows you to search numerically for (meta)stable minima of the one-loop effective potential. Additional commands enable you to further study specific minima, by, e.g., computing the mass spectrum for those vacua. Vscape combines the flexibility of symbolic software, with the speed of a numerical package.

Program summary

Program title:Vscape 1.1.1Catalogue identifier: ADZW_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZW_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 80 507No. of bytes in distributed program, including test data, etc.: 6 708 938Distribution format: tar.gzProgramming language: C++Computer: Pentium 4 PC Computers: need (GNU) C++ compiler, Linux standard GNU installation (./configure; make; make install). A precompiled Windows XP version is included in the distribution packageOperating system: Linux, Windows XP using cygwinRAM: 10 MBWord size: 32 bitsClassification: 11.6External routines: GSL (http://www.gnu.org/software/gsl/), CLN (http://www.ginac.de/CLN/), GiNaC (http://directory.fsf.org/GiNaC.html)Nature of problem:Vscape is an interactive tool for studying the one-loop effective potential of an ungauged supersymmetric model of chiral multiplets. The program allows the user to define a supersymmetric model by specifying the superpotential. The F-terms and the scalar and fermionic mass matrices are calculated symbolically. The program then allows you to search numerically for (meta)stable minima of the one-loop effective potential. Additional commands enable you to further study specific minima, by, e.g., computing the mass spectrum for those vacua. Vscape combines the flexibility of symbolic software with the speed of a numerical package.Solution method: Coleman-Weinberg potential is computed using numerical matrix diagonalization. Minima of the one-loop effective potential are found using the Nelder and Mead simplex algorithm. The one-loop effective potential can be studied using numerical differentiation. Symbolic users interface implemented using flex and bison.Restrictions:N=1 supersymmetric chiral models onlyUnusual features: GiNaC (+CLN), GSL, ReadLib (not essential)Running time: Interactive users interface. Most commands execute in a few ms. Computationally intensive commands execute in order of minutes, depending on the complexity of the user defined model.  相似文献   

20.
Current publicly available computer programs calculate the spectrum and couplings of the minimal supersymmetric standard model under the assumption of R-parity conservation. Here, we describe an extension to the SOFTSUSY program which includes R-parity violating effects. The user provides a theoretical boundary condition upon the high-scale supersymmetry breaking R-parity violating couplings. Successful radiative electroweak symmetry breaking, electroweak and CKM matrix data are used as weak-scale boundary conditions. The renormalisation group equations are solved numerically between the weak scale and a high energy scale using a nested iterative algorithm. This paper serves as a manual to the R-parity violating mode of the program, detailing the approximations and conventions used.

Program summary

Program title:SOFTSUSY v3.0Catalogue identifier: ADPM_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADPM_v2_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 75 927No. of bytes in distributed program, including test data, etc.: 570 916Distribution format: tar.gzProgramming language: C++, FortranComputer: Personal computerOperating system: Tested on Linux 4.xWord size: 32 bitsClassification: 11.6Catalogue identifier of previous version: ADPM_v1_0Journal reference of previous version: Comput. Phys. Comm. 143 (2002) 305Does the new version supersede the previous version?: YesNature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the R-parity violating minimal supersymmetric standard model. The solution to the renormalisation group equations must be consistent with a high-scale boundary condition on supersymmetry breaking parameters and Rp parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters.Solution method: Nested iterative algorithmReasons for new version: This is an extension to the SOFTSUSY program which includes R-parity violating effects. The user provides a theoretical boundary condition upon the high-scale supersymmetry breaking R-parity violating couplings. Successful radiative electroweak symmetry breaking, electroweak and CKM matrix data are used as weak-scale boundary conditions. The renormalisation group equations are solved numerically between the weak scale and a high energy scale using a nested iterative algorithm. The paper serves as a manual to the R-parity violating mode of the program, detailing the approximations and conventions used.Restrictions:SOFTSUSY3.0 will provide a solution only in the perturbative regime and it assumes that all couplings of the MSSM are real (i.e. CP-conserving). The iterative SOFTSUSY algorithm will not converge if parameters are too close to a boundary of successful electroweak symmetry breaking, but a warning flag will alert the user to this fact.Running time: A few seconds per parameter point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号