首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although there have been many ignition studies of n-heptane—a primary reference fuel—few studies have provided detailed insights into the low-temperature chemistry of n-heptane through direct measurements of intermediate species formed during ignition. Such measurements provide understanding of reaction pathways that form toxic air pollutants and greenhouse gas emissions while also providing key metrics essential to the development of chemical kinetic mechanisms. This paper presents new ignition and speciation data taken at high pressure (9 atm), low temperatures (660–710 K), and a dilution of inert gases-to-molecular oxygen of 5.64 (mole basis). The detailed time-histories of 17 species, including large alkenes, aldehydes, carbon monoxide, and n-heptane were quantified using gas chromatography. A detailed chemical kinetic mechanism developed previously for oxidation of n-heptane reproduced experimentally observed ignition delay times reasonably well, but predicted levels of some important intermediate chemical species that were significantly different from measured values. Results from recent theoretical studies of low temperature hydrocarbon oxidation reaction rates were used to upgrade the chemical kinetic mechanism for n-heptane, leading to much better agreement between experimental and computed intermediate species concentrations. The implications of these results to many other hydrocarbon fuel oxidation mechanisms in the literature are discussed.  相似文献   

2.
The oxidation of n-butyl formate, a potential biofuel candidate, is studied using three different experimental approaches. Ignition delay times have been measured for stoichiometric mixtures of fuel and air for pressures of about 20 and 90 bar at temperatures from 846 up to 1205 K in a high-pressure shock tube. A rapid compression machine has been used to determine the low-temperature ignition delay times for stoichiometric mixtures at pressures close to 20 bar over the temperature range from 646 K up to 861 K. Laminar burning velocities have been determined for stoichiometric ratios ranging from 0.8 to 1.2 using the high-pressure chamber method combined with an optical Schlieren cinematography setup in order to acquire experimental data at elevated pressures of about 10 bar and a temperature of 373 K. A detailed kinetic model has been constructed including high-temperature and low-temperature reaction pathways. The enthalpies of formation, entropies, and specific heats at constant pressure for the fuel, its primary radicals, and several combustion intermediates have been computed with the CBS-QB3 methods and included in the mechanism. This model was validated successfully against the presented data and used to elucidate the combustion of this interesting ester. The importance of accurate inclusion of the low-temperature peroxy chemistry has been highlighted through sensitivity and reaction path analysis. This study presents the first combustion study of n-butyl formate and leads to an improved understanding of the chemical kinetics of alkyl ester oxidation.  相似文献   

3.
In order to reconcile an increasingly large deviation (order of magnitude) of the ignition delay time at decreasing initial temperature, computed using the prior art kinetic schemes, with the available experimental values, a new skeletal mechanism (54 species, 94 reactions) for low-temperature (500-800 K) ignition of n- butane in air based on ab initio calculations is developed. The skeletal mechanism obtained accurately reproduces n-butane combustion kinetics for the practically important ranges of pressure, temperature and fuel-air equivalence ratio, especially in the low-temperature range. The elaborated first principal skeletal chemical kinetic mechanism of n-butane oxidation was validated against available experimental results for normal and elevated initial pressure (1-15 atm) using the Chemical Work Bench code. A good agreement with experiments was shown.  相似文献   

4.
《能源学会志》2020,93(4):1559-1570
A new skeletal mechanism of n-butane is developed for describing its ignition and combustion characteristics applicable over a wide range of conditions: initial temperature 690–1430 K, pressure 1–30 atm, and equivalence ratio 0.5–2.0. Starting with a detailed chemical reaction kinetic model of 230 species and 1328 reactions (Healy et al., Combust. Flame, 2010), the directed relation graph method is applied as the first step to derive a semi-detailed mechanism with 134 species. Then, the reaction path analysis in conjunction with temperature sensitivity analysis is used to remove the redundant species and reaction paths simultaneously under the condition of low-temperature and moderate-to-high temperatures, respectively. Finally, a skeletal n-butane mechanism consisting of 86 species and 373 reactions can be obtained. Mechanism validation indicates that the new developed skeletal mechanism is in good agreement with the detailed mechanism in predicting the global ignition and combustion characteristics. The new skeletal mechanism is further validated using extensive available literature data including rapid pressure machine ignition delay time, shock-tube ignition delay time, laminar flame speed, and jet-stirred reaction oxidation, covering a large range of temperatures, pressures, and equivalence ratios. The comparison results demonstrate that a satisfactory agreement between predictions and experimental measurements is achieved.  相似文献   

5.
Ignition delay time measurements were recorded at equivalence ratios of 0.3, 0.5, 1, and 2 for n-butane at pressures of approximately 1, 10, 20, 30 and 45 atm at temperatures from 690 to 1430 K in both a rapid compression machine and in a shock tube. A detailed chemical kinetic model consisting of 1328 reactions involving 230 species was constructed and used to validate the delay times. Moreover, this mechanism has been used to simulate previously published ignition delay times at atmospheric and higher pressure. Arrhenius-type ignition delay correlations were developed for temperatures greater than 1025 K which relate ignition delay time to temperature and concentration of the mixture. Furthermore, a detailed sensitivity analysis and a reaction pathway analysis were performed to give further insight to the chemistry at various conditions. When compared to existing data from the literature, the model performs quite well, and in several instances the conditions of earlier experiments were duplicated in the laboratory with overall good agreement. To the authors’ knowledge, the present paper presents the most comprehensive set of ignition delay time experiments and kinetic model validation for n-butane oxidation in air.  相似文献   

6.
Autoignition characteristics of n-heptane/air, gasoline/air, and ternary surrogate/air mixtures were studied behind reflected shock waves in a high-pressure, low-temperature regime similar to that found in homogeneous charge compression ignition (HCCI) engine cycles. The range of experiments covered combustion of fuel in air for lean, stoichiometric, and rich mixtures (Φ=0.5, 1.0, 2.0), two pressure ranges (15-25 and 45-60 atm), temperatures from 850 to 1280 K, and exhaust gas recirculation (EGR) loadings of (0, 20, and 30%). The ignition delay time measurements in n-heptane are in good agreement with the shock tube study of Fieweger et al. (Proc. Combust. Inst. 25 (1994) 1579-1585) and support the observation of a pronounced, low-temperature, NTC region. Strong agreement was seen between ignition delay time measurements for RD387 gasoline and surrogate (63% iso-octane/20% toluene/17% n-heptane by liquid volume) over the full range of experimental conditions studied. Ignition delay time measurements under fuel-lean (Φ=0.5) mixture conditions were longer than with Φ=1.0 mixtures at both the low- (15-25 atm) and high- (45-60 atm) pressure conditions. Ignition delay times in fuel-rich (Φ=2.0) mixtures for both gasoline and surrogate were indistinguishable in the low-pressure (15-25 atm) range, but were clearly shorter at high-pressures (45-60 atm). EGR loading affected the ignition delay times similarly for both gasoline and surrogate, with clear trends indicating an increase in ignition delay time with increased EGR loading. This data set should provide benchmark targets for detailed mechanism validation and refinement under HCCI conditions.  相似文献   

7.
The pyrolysis of n-decane was investigated in a flow reactor at 5, 30, 150 and 760 Torr, and the oxidation of n-decane at equivalence ratios of 0.7, 1.0 and 1.8 was studied in laminar premixed flames at 30 Torr. In both experiments, synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used to identify combustion species and measure their mole fraction profiles. A new detailed kinetic model of n-decane with 234 species and 1452 reactions was developed for applications in intermediate and high temperature regions, and was validated against the experimental results in the present work. The model was also validated against previous experimental data on n-decane combustion, including species profiles in pyrolysis and oxidation in high pressure shock tube and atmospheric pressure flow reactor, jet stirred reactor oxidation, atmospheric pressure laminar premixed flame, counterflow diffusion flame and global combustion parameters such as laminar flame speeds and ignition delay times. In general, the performance of the present model in reproducing these experimental data is reasonably good. Sensitivity analysis and rate of production analysis were conducted to understand the decomposition processes of n-decane.  相似文献   

8.
Autoignition of n-heptane droplets under microgravity is investigated numerically. The comprehensive model, considering the transience in both the gas and liquid phases and non-ideal thermophysical properties, includes the 116-step reaction mechanism of Griffiths. Two-stage ignition manifests for ambient temperature less than 900 K at elevated pressures of 0.5 and 1.0 MPa. The predicted first delays and total delays agree well with the experimental data in the literature. The second delay decreases greatly with increasing pressure because a stronger Stefan flow supplies more fuel vapor for reaction as the cool flame shifts closer to the droplet to enhance evaporation. The Stefan flow effect, in combination with the inhomogeneous temperature and fuel vapor distributions, explains why the NTC (negative temperature coefficient) present in homogeneous mixtures is not observed in droplet ignition experiments. Near the minimum ignition diameter, the ignition delay increases for smaller droplets at T = 700 K, P = 1.0 MPa. For a droplet smaller than the minimum ignition diameter, only first ignition with cool flame is reached. The absence of ZTC (zero temperature coefficient) in our simulations may be attributed to the weaker inverse temperature dependence of the reaction mechanism adopted.  相似文献   

9.
Rapid compression machine and shock-tube ignition experiments were performed for real fuel/air isobutane mixtures at equivalence ratios of 0.3, 0.5, 1, and 2. The wide range of experimental conditions included temperatures from 590 to 1567 K at pressures of approximately 1, 10, 20, and 30 atm. These data represent the most comprehensive set of experiments currently available for isobutane oxidation and further accentuate the complementary attributes of the two techniques toward high-pressure oxidation experiments over a wide range of temperatures. The experimental results were used to validate a detailed chemical kinetic model composed of 1328 reactions involving 230 species. This mechanism has been successfully used to simulate previously published ignition delay times as well. A thorough sensitivity analysis was performed to gain further insight to the chemical processes occurring at various conditions. Additionally, useful ignition delay time correlations were developed for temperatures greater than 1025 K. Comparisons are also made with available isobutane data from the literature, as well as with 100% n-butane and 50-50% n-butane-isobutane mixtures in air that were presented by the authors in recent studies. In general, the kinetic model shows excellent agreement with the data over the wide range of conditions of the present study.  相似文献   

10.
Ignition and combustion of a liquid fuel droplet injected into a hot and highly pressurized combustor are investigated numerically, including the effect of internal circulation. Ignition delay times of droplets predicted with internal circulation are almost the same as those from the diffusion limit model insofar as ignition takes near the droplet. Combustion regime maps are drawn to classify the droplet combustion phenomena according to the configuration and location of the flame with respect to initial Reynolds numbers and the surrounding gas temperatures.  相似文献   

11.
Applied to the primary reference fuel n-heptane, we present the chemistry-guided reduction (CGR) formalism for generating kinetic hydrocarbon oxidation models. The approach is based on chemical lumping and species removal with the necessity analysis method, a combined reaction flow and sensitivity analysis. Independent of the fuel size, the CGR formalism generates very compact submodels for the alkane low-temperature oxidation and provides a general concept for the development of compact oxidation models for large model fuel components such as n-decane and n-tetradecane. A defined sequence of simplification steps, consisting of the compilation of a compact detailed chemical model, the application of linear chemical lumping, and finally species removal based on species necessity values, allows a significantly increased degree of reduction compared to the simple application of the necessity analysis, previously published species, or reaction removal methods. The skeletal model derived by this procedure consists of 110 species and 1170 forward and backward reactions and is validated against the full range of combustion conditions including low and high temperatures, fuel-lean and fuel-rich mixtures, pressures between 1 and 40 bar, and local (species concentration profiles in flames, plug flow and jet-stirred reactors, and reaction sensitivity coefficients) and global parameters (ignition delay times in shock tube experiments, ignition timing in a HCCI engine, and flame speeds). The species removal is based on calculations using a minimum number of parameter configurations, but complemented by a very broad parameter variation in the process of compiling the kinetic input data. We further demonstrate that the inclusion of sensitivity coefficients in the validation process allows efficient control of the reduction process. Additionally, a compact high-temperature n-heptane oxidation model of 47 species and 468 reactions was generated by the application of necessity analysis to the skeletal mechanism.  相似文献   

12.
The autoignition process of single n-heptane droplets in air is simulated for spherical symmetry and at constant pressure. Using a detailed transport model and detailed chemical kinetics, the governing equations of the two phases are solved in a fully coupled way. The ambient gas temperature is varied from 600 to 2000 K. Simulations are performed for isobaric conditions. The initial droplet radius ranges from 10 to 200 μm. The influence of different physical parameters, such as ambient pressure, droplet radius, or initial conditions, on the ignition delay time and the location of the ignition is investigated. The gas temperature turns out to be the parameter dominating the ignition process. The droplet temperature shows a minor influence on the ignition delay time. The influence of the droplet radius on the ignition delay shows a high sensitivity to other ambient conditions, such as ambient temperature and pressure.  相似文献   

13.
Despite considerable interest in butanol as a potential biofuel candidate, its ignition behaviour at elevated pressures still remains largely unexplored. The present study investigates the oxidation of n-butanol in air at pressures near 80 bar. Ignition delays were determined experimentally in the temperature range of 795–1200 K between 61 and 92 bar. The time of ignition was determined by recording pressure and CH-emission time histories throughout the course of the experiments. The results display the first evidence of the influence of negative temperature coefficient (NTC) behaviour which was not observed in earlier ignition studies. The high-pressure measurements show that NTC behaviour is enhanced as pressures are increased. The experimental results were modelled using an improved chemical kinetic mechanism which includes a simplified sub-mechanism for butyl-peroxy formation and isomerisation reactions currently incompletely accounted for in n-butanol kinetic models. The detailed mechanism validated with the high-pressure ignition results for realistic engine in-cylinder conditions can have significant impact on future advanced low-temperature combustion engines.  相似文献   

14.
The kinetics of oxidation, ignition, and combustion of Gas-to-Liquid (GtL) Fischer–Tropsch Synthetic kerosene as well as of a selected GtL-surrogate were studied. New experimental results were obtained using (i) a jet-stirred reactor – species profiles (10 bar, constant mean residence time of 1 s, temperature range 550–1150 K, equivalence ratios φ = 0.5, 1, and 2), (ii) a shock tube – ignition delay time (≈16 bar, temperature range 650–1400 K, φ = 0.5 and 1), and (iii) a burner – laminar burning velocity (atmospheric pressure, preheating temperature = 473 K, 1.0 ? φ ? 1.5). The concentrations of the reactants, stable intermediates, and final products were measured as a function of temperature in the jet-stirred reactor (JSR) using probe sampling followed by on-line Fourier Transformed Infra-Red spectrometry, and gas chromatography analyses (on-line and off-line). Ignition delay times behind reflected shock waves were determined by measuring time-dependent CH* emission at 431 nm. Laminar flame speeds were obtained in a bunsen-type burner by applying the cone angle method. Comparison with the corresponding results for Jet A-1 showed comparable combustion properties. The GtL-fuel oxidation was modeled under these conditions using a detailed chemical kinetic reaction mechanism (8217 reactions vs. 2185 species) and a 3-component model fuel mixture composed of n-decane, iso-octane (2,2,4-trimethyl pentane), and n-propylcyclohexane. The model showed good agreement with concentration profiles obtained in a JSR at 10 bar. In the high temperature regime, the model represents well the ignition delay times for the fuel air mixtures investigated; however, the calculated delays are longer than the measurements. It was observed that the ignition behavior of the surrogate fuel is mainly influenced by n-alkanes and not by the addition of iso-alkanes and cyclo-alkanes. The simulated laminar burning velocities were found in excellent agreement with the measurements. No deviation between burning velocity data for the GtL-surrogate and GtL was seen, within the uncertainty range. The presented data on ignition delay times and burning velocities agree with earlier results obtained for petrol-derived jet fuel. The suitability of both the current detailed reaction model and the selected GtL surrogate was demonstrated. Finally, our results support the use of the GtL fuel as an alternative jet fuel.  相似文献   

15.
《能源学会志》2019,92(6):1944-1955
This experimental research studies the gas-phase ignition of single droplets of several gel propellant compositions based on ethyl alcohol with a gellant, liquid and fine solid combustible components. Droplets 2 mm in diameter were located on a holder and heated in a muffle furnace at a temperature ranging from 873 to 1073 K. A software and hardware system of high-speed video recording (4200 frames per second at full resolution) allowed the analysis of consistent patterns in the physical and chemical processes occurring during the induction period. For the compositions under study, we determined the threshold conditions (minimum ambient temperature of 873–943 K) required for the gel propellant ignition as well as the dependences of the ignition delay times versus air temperature. The ignition delay times range from 0.1 to 3.3 s. If the ignition does not start within this period, it will not occur after a longer heating time, since the propellant droplets evaporate completely. For the first time, using the shadow methods, we analyze the characteristics of vapor jetting during the induction period as a result of microexplosions caused by the differences in the boiling points of fuel components. The average vapor jetting speed is about 3 m/s. The size of the zones, in which the vapors slow down to zero, ranges from 6 to 8 mm. We determine the consistent patterns of changes in the diameter of the sphere-shaped gas-vapor envelope around the propellant droplet at the moment of ignition at different ambient temperatures. The higher the temperature, the higher the intensity of physical and chemical processes. This shortens the ignition delay times. At relatively high air temperatures (over 1050 K), the diameter of the flammable gas-vapor envelope around the propellant droplet at the moment of ignition is three times smaller than this value at the near-threshold ignition conditions, when the diameter of the fuel vapor envelope is about 9 mm (more than four typical initial droplet diameters). The results obtained helped us formulate a physical model of the process, which may serve as the basis for the development of a mathematical model simulating the ignition of gel propellant droplets under rapid heating. Such a mathematical model will make it possible to reliably forecast the characteristics of the process in a wide variation range of propellant properties, droplet configurations and parameters of the heating source.  相似文献   

16.
Biofuels are considered as potentially attractive alternative fuels that can reduce greenhouse gas and pollutant emissions. iso-Pentanol is one of several next-generation biofuels that can be used as an alternative fuel in combustion engines. In the present study, new experimental data for iso-pentanol in shock tube, rapid compression machine, jet stirred reactor, and counterflow diffusion flame are presented. Shock tube ignition delay times were measured for iso-pentanol/air mixtures at three equivalence ratios, temperatures ranging from 819 to 1252 K, and at nominal pressures near 40 and 60 bar. Jet stirred reactor experiments are reported at 5 atm and five equivalence ratios. Rapid compression machine ignition delay data was obtained near 40 bar, for three equivalence ratios, and temperatures below 800 K. Laminar flame speed data and non-premixed extinction strain rates were obtained using the counterflow configuration. A detailed chemical kinetic model for iso-pentanol oxidation was developed including high- and low-temperature chemistry for a better understanding of the combustion characteristics of higher alcohols. First, bond dissociation energies were calculated using ab initio methods, and the proposed rate constants were based on a previously presented model for butanol isomers and n-pentanol. The model was validated against new and existing experimental data at pressures of 1–60 atm, temperatures of 650–1500 K, equivalence ratios of 0.25–4.0, and covering both premixed and non-premixed environments. The method of direct relation graph (DRG) with expert knowledge (DRGX) was employed to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was used to predict non-premixed flames. In addition, reaction path and temperature A-factor sensitivity analyses were conducted for identifying key reactions at various combustion conditions.  相似文献   

17.
The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric ether, di-n-butyl ether (DBE), is presented and a detailed reaction model is developed. DBE has been identified recently as a candidate biofuel produced from lignocellulosic biomass. The model includes both high temperature and low temperature reaction pathways with reaction rates generated using appropriate rate rules. In addition, experimental studies on fundamental combustion characteristics, such as ignition delay times and laminar flame speeds have been performed. A laminar flow reactor was used to determine the ignition delay times of lean and stoichiometric DBE/air mixtures. The laminar flame speeds of DBE/air mixtures were measured in the stagnation flame configuration for a wide rage of equivalence ratios at atmospheric pressure and an unburned reactant temperature of 373 K. All experimental data were modeled using the present kinetic model. The agreement between measured and computed results is satisfactory, and the model was used to elucidate the oxidation pathways of DBE. The dissociation of keto-hydroperoxides, leading to radical chain branching was found to dominate the ignition of DBE in the low temperature regime. The results of the present numerical and experimental study of the oxidation of di-n-butyl ether provide a good basis for further investigation of long chain linear and branched ethers.  相似文献   

18.
The use of gasoline in Homogeneous Charge Compression Ignition engines has propelled the need to better understand compression ignition processes for gasoline under engine-like conditions. In order to quantify low-temperature heat release and to provide fundamental validation data for chemical kinetic models, it is imperative to study autoignition phenomena under well-controlled conditions. However, there is a significant lack of autoignition delay data in the low temperature regime. Recognizing the need for kinetic information at high pressures and low-to-intermediate temperatures, this work aims to fill this void by conducting an experimental study of gasoline autoignition in a Rapid Compression Machine (RCM) to characterize the ignition response of gasoline + air mixtures over a wide range of compression temperatures at compression pressures of 20 and 40 bar with equivalence ratios ranging from 0.3 to 1.0. Results from the RCM experiments are also simulated using a four-component gasoline surrogate model which includes n-heptane, iso-octane, toluene, and 2-pentene. For the conditions investigated, good agreement between the experiments and the four-component surrogate model, in terms of first-stage and total ignition delay times as well as the comparison of measured and simulated pressure traces, is demonstrated. Kinetic analysis is further conducted to understand the role of the different hydrocarbon classes present in gasoline in controlling autoignition.  相似文献   

19.
A shock tube study of methyl decanoate autoignition at elevated pressures   总被引:1,自引:0,他引:1  
A shock tube study of the autoignition of methyl decanoate, a candidate surrogate for biodiesel fuels containing large methyl esters, has been carried out. Ignition delay times were measured in reflected-shock-heated gases by monitoring electronically-excited OH chemiluminescence and pressure. Methyl decanoate/air mixtures were studied at equivalence ratios of 0.5, 1.0, and 1.5, at temperatures from 653 to 1336 K, and for pressures around 15–16 atm. The experimental results illustrate negative-temperature-coefficient behavior characteristic of alkanes, with ignition delay times very similar at high temperatures and somewhat longer at low temperatures than those for n-decane. Experimental results are compared to the kinetic modeling predictions of Herbinet et al. [Combust. Flame 154 (2008) 507–528] with remarkable agreement. Both reaction flux analysis and the comparison of experimental methyl decanoate and n-decane ignition delay times illustrate the importance of the long alkyl chain in controlling methyl decanoate overall reactivity and the subtle role the methyl ester group has on inhibiting low-temperature reactivity.  相似文献   

20.
Cool flames play a critical role in ignition timing, burning rate, burning limits, engine knocking, and emissions in conventional and advanced combustion engines. This paper provides an overview of the recent progress in experimental and computational studies of cool flames. First, a brief review of low-temperature chemistry and classical studies of cool flames is presented. Next, the recent experimental and computational findings of cool flames in microchannels, microgravity droplet combustion, counterflow flames, and turbulent combustion environments are reviewed. The flammability diagrams of different low-temperature flames and their relations to hot flames in premixed and nonpremixed systems are discussed. The impact of cool flames on turbulent combustion and knock formation is also highlighted. Finally, future avenues in cool flame research, including the use of cool flames as a new platform for low-temperature kinetic model validation, are presented. It is concluded that the understanding and control of low-temperature combustion is critical for the development of future advanced engines and new fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号