首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study on the effects of hydrogen addition on the instabilities of spherically expanding propane–air flames was conducted in a constant volume combustion vessel over a wide range of mixture compositions and initial temperatures and pressures. The measured laminar burning velocities were compared with those calculatedvalues by using one dimensional freely propagating flames and a recently developed detailed kinetic mechanism. Goodagreementwas obtained between the experiment and calculation. The schlieren images show that for lean mixture combustion, hydrogen addition willincrease the hydrodynamic instability due to the decreased flame thickness and increase the diffusional-thermal instability due to the decreased Lewis number. While forrich mixture combustion, the flame front is initially destabilized and later tends to the stabilized with the increase of hydrogen fraction. This is due to the competing effects of the hydrodynamic instability and the diffusional-thermal instability.  相似文献   

2.
Experiments were conducted in a closed vessel using Schlieren system to study the cellular instabilities of hydrogen-air premixed flames at different equivalence ratios (from 0.6 to 2.5), initial temperatures (from 300 K to 450 K), and initial pressures (from 0.1 MPa to 0.3 MPa). The cellular instabilities of hydrogen-air flames were interpreted and evaluated in the viewpoint of the diffusive-thermal and hydrodynamic instabilities. Also, critical flame radius and critical Peclet number were measured. The results showed that for lean hydrogen-air flames, the cellular instabilities are dominantly influenced by the diffusive-thermal instability; for stoichiometric and rich hydrogen-air flames, the cellular instabilities are just influenced by the hydrodynamic instability. Critical flame radius is increased with the increase of equivalence ratio and/or initial temperature, and is decreased with the increase of initial pressure. Critical Peclet number is increased with the increase of equivalence ratio, and is insensitive to initial temperature and initial pressure.  相似文献   

3.
通过拓展层流火焰消耗速度的概念,将其定义与反应进程变量(progress variable)的定义相结合,给出了一个积分层流燃烧速度的广义定义。在准一维稳态系统中,分析了积分层流燃烧速度,以及其与未燃气体的位移速度和已燃气体的位移速度之间的关系。对甲烷-空气和丙烷-空气拉伸层流预混火焰在常温常压下进行了数值计算,研究了在不同当量比下,火焰拉伸对层流燃烧速度的影响,并得出了马克斯坦长度。对基于通过火焰前锋放热率的积分层流燃烧速度和基于燃料消耗率的积分层流燃烧速度进行了比较。结论表明低拉伸火焰的马克斯坦数与渐进分析一致,也与球形火焰获得的实验数据吻合。  相似文献   

4.
Laminar premixed flame front may be wrinkled due to the hydrodynamic and diffusive-thermal instabilities. This may lead to the occurrence of the cellular structure and the self-acceleration. The lean unstable hydrogen/air premixed flame at various initial pressures are studied to clarify the effect of the initial pressure on the evolution of the unstable laminar flame. Linear and nonlinear development stages of the unstable flame are simulated and investigated separately. In the linear stage, the initial sinusoidal wave disturbance on the flame front will still keep its initial configuration. The growth rate increases firstly and then decreases with the increase of the wavenumbers. The effect of the self-acceleration on the unstable flame front will be stronger in the linear stage at the higher initial pressure, since there are larger thermal expansion and constant Lewis number for hydrogen/air premixed flame at higher pressure. There are little discrepancies for the calculated growth rates with those predicted by the revised dispersion relation. The nonlinear stage of the unstable flame propagation could be divided into two stages, the transitional and the stable nonlinear stages. In the transitional stage, the flame front cells splits, merges and moves all the time and the initial wavenumber has a great influence on the cell evolution process. With the evolution of the cell on the flame front, the cellular structure on the flame front will not change greatly with the initial wavenumbers in the stable nonlinear stage. The effect of self-acceleration due to the wrinkling of the flame front at this stage is weakened with the increase of the initial pressure. At the higher pressure, more wrinkled structures with smaller mean curvature are distributed on the flame front. At last, results show that the flame front will propagate faster for the larger computation domain. Based on the fractal theory, the fractal dimension of lean hydrogen/air premixed flame with the equivalence ratio of 0.6 at 0.5 MPa in the 2D domain is obtained and around 1.26.  相似文献   

5.
To investigate cell formation in methane (or propane)/hydrogen/carbon monoxide-air premixed flames, the outward propagation and development of surface cellular instabilities of centrally ignited spherical premixed flames were experimentally studied in a constant pressure combustion chamber at room temperature and elevated pressures. Additionally, unstretched laminar burning velocities and Markstein lengths of the mixtures were obtained by analyzing high-speed schlieren images. In this study, hydrodynamic and diffusional-thermal instabilities were evaluated to examine their effects on flame instabilities. The experimentally-measured unstretched laminar burning velocities were compared to numerical predictions using the PREMIX code with a H2/CO/C1-C4 mechanism, USC Mech II, from Wang et al. [22]. The results indicate a significant increase in the unstretched laminar burning velocities with hydrogen enrichment and a decrease with the addition of hydrocarbons, whereas the opposite effects for Markstein lengths were observed. Furthermore, effective Lewis numbers of premixed flames with methane addition decreased for all of the cases; meanwhile, effective Lewis numbers with propane addition increase for lean and stoichiometric conditions and increase for rich and stoichiometric cases for hydrogen-enriched flames. With the addition of propane, the propensity for cell formation significantly diminishes, whereas cellular instabilities for hydrogen-enriched flames are promoted. However, similar behavior of cellularity was obtained with the addition of methane, which indicates that methane is not a candidate for suppressing cell formation in methane/hydrogen/carbon monoxide-air premixed flames.  相似文献   

6.
The effects of hydrogen addition on laminar premixed methanol–air flames were studied both experimentally and numerically. To achieve this, a constant volume chamber (CVC) and the premix code in CHEMKIN were used. During the experiments, the equivalence ratios (ϕ) and hydrogen mole fractions (Xh) were set to 0.6 to 1.8 and 0%–100%, respectively. In addition, initial environmental conditions were set to 375 K and 1 atm. The results indicate that the laminar flame speed (LFS) and burning velocity (LBV) both increase when more hydrogen is added into the methanol–air mixtures. For premixed methanol–air flames, the Markstein length (Lb) decreases monotonically with an increase in the equivalence ratio; however, when the hydrogen fraction is greater than 40%, an increasing trend in the Markstein length is presented as the mixtures move toward the fuel-rich side. The variation in Markstein length is non-monotonic with the hydrogen fraction. A kinetics analysis indicates that methanol is mainly consumed by the dehydrogenation reaction caused from the impact of the active free radicals (OH and H). Reactions involving active free radicals and light intermediate species have the highest sensitivity and contribute the most to the propagation of a laminar flame. Therefore, the promotion effect of hydrogen additive is due to an enhancement in the radical pooling of H, OH, and O. The chain branching reaction R5 (O2 + H = O + OH) is essential for the geometric growth of free radicals. In addition, the amount of formaldehyde decreases owing to the hydrogen blending.  相似文献   

7.
Propagation characteristics of hydrogen-air deflagration need to be understood for an accurate risk assessment. Especially, flame propagation velocity is one of the most important factors. Propagation velocity of outwardly propagating flame has been estimated from burning velocity of a flat flame considering influence of thermal expansion at a flame front; however, this conventional method is not enough to estimate an actual propagation velocity because flame propagation is accelerated owing to cellular flame front caused by intrinsic instability in hydrogen-air deflagration. Therefore, it is important to understand the dynamic propagation characteristics of hydrogen-air deflagration. We performed explosion tests in a closed chamber which has 300 mm diameter windows and observed flame propagation phenomena by using Schlieren photography. In the explosion experiments, hydrogen-air mixtures were ignited at atmospheric pressure and room temperature and in the range of equivalence ratio from 0.2 to 1.0. Analyzing the obtained Schlieren images, flame radius and flame propagation velocity were measured. As the result, cellular flame fronts formed and flame propagations of hydrogen–air mixture were accelerated at the all equivalence ratios. In the case of equivalent ratio φ = 0.2, a flame floated up and could not propagate downward because the influence of buoyancy exceeded a laminar burning velocity. Based upon these propagation characteristics, a favorable estimation method of flame propagation velocity including influence of flame acceleration was proposed. Moreover, the influence of intrinsic instability on propagation characteristics was elucidated.  相似文献   

8.
Cellular formation in non-premixed flames is experimentally studied in an opposed-flow tubular burner. This burner allows independent variation of the global stretch rate and overall flame curvature. In opposed-flow flames formed by 21.7% hydrogen diluted in carbon dioxide versus air, cells are formed near extinction with a low fuel Lewis number and a low initial mixture strength. Using an intensified CCD camera, the flame chemiluminescence is imaged to study cellular formation from the onset of cells to near extinction conditions. The experimental onset of cellular instability is found to be at or at a slightly lower Damköhler number than the numerically determined extinction limit based on a two-point boundary value solution of the tubular flame. For fuel Lewis numbers less than unity, concave curvature towards the fuel retards combustion and weakens the flame and convex curvature towards the fuel promotes combustion and strengthens the flame. In the cell formation process, the locally concave flame cell midsection is weakened and the locally convex flame cell ends are strengthened. With increasing stretch rate, the flame breaks into cells and the cell formation process continues until near-circular cells are formed with no concave midsection. Further increase in the stretch rate leads to cell extinction. With increasing stretch rate, the flame thickness at the cell midsection decreases similar to a planar opposed-flow flame while the flame thickness at the cell edges is unchanged and can even increase due to the strengthening effect of convex curvature at the flame edges toward the low Lewis number fuel. The results show the existence of cellular flames well beyond the two-point boundary value extinction limit and the importance of local flame curvature in the formation of flame cells.  相似文献   

9.
With respect to hydrogen internal combustion engines beside turbulence also flame front instabilities of high-pressure combustion provoke an acceleration of the flame. To account for this effect within engine simulations, it is suggested to include the impact of flame front instabilities directly into a “quasi-laminar” burning velocity that is an input for turbulent combustion models. Premixed hydrogen/air flames are investigated in a single-cylinder compression machine using OH-chemiluminescence and in-cylinder pressure analysis. Values of burning velocities are calculated from flame front velocities considering thermal expansion effects. A flame speed correlation is derived which covers temperatures and pressures of the unburned mixture, relevant for internal combustion engines, ranging from 350 K to 700 K and 5 bar to 45 bar. Values of air/fuel equivalence ratio cover lean and rich regimes between 0.4 ≤ λ ≤ 2.8. For an evaluation of stretch and instability effects a comparison to fundamental laminar burning velocities of a one-dimensional flame computed with a detailed chemical kinetic-mechanism is given. At high-pressure conditions flame speed measurements demonstrate that flame front instabilities have an accelerating effect on the value of laminar burning velocities, which cannot be reproduced by computations with a chemical model. A linear stability analysis is applied in order to estimate the magnitude of instabilities. The proposed “quasi-laminar” burning velocity does not account for interaction between turbulence and instability effects. Consequently, at increasing turbulence levels partially counter-balancing of instabilities by turbulence is not followed which may allegorize a possible limitation of the suggested approach.  相似文献   

10.
We experimentally investigated the cellular instabilities of expanding spherical propagation of hydrogen–air, methane–air, and propane–air flames. Using image-thresholding technique, the formations and developments of a cell on a flame surface were investigated. The size of the observed cell due to the hydrodynamic instability was larger than those generated by the diffusional–thermal instability. The critical flame radius and critical Peclet number for the onset of instability were evaluated. These critical values for hydrogen–air and methane–air flames increased with increasing concentration. The values decreased with increasing initial pressure because the flame thickness decreased with increasing initial pressure. The ratio of the increase in the burning velocity increased with increasing initial pressure, although that of the hydrogen–air flames only increased with decreasing concentration. The results demonstrated that acceleration of the flame speed is affected by the intensity of the diffusional–thermal and hydrodynamic instabilities.  相似文献   

11.
To study the effects of different diluents on the propagation characteristics of H2/CO/air mixture turbulent premixed flames, a series of experiments were carried out in a turbulent premixed flame experimental system. The effects of turbulence intensity (0.49–1.31 m/s), dilution gas content (10%, 20%, and 30%), hydrogen fraction (50%, 70%, and 90%), and equivalence ratio (0.6, 0.8, and 1.0) on the turbulent premixed flame were studied. The results show that with the increase in hydrogen fraction or turbulence intensity or equivalence ratio, the ST and ut increase at the same radius. Compared with N2 dilution, CO2 dilution showed a more obvious inhibition effect on ST. With the increase of Ka, ST;35mm/u’ gradually decreased, and the extent of ST;35mm/u’ decrease gradually became smaller. As the intensity of turbulence increases or the hydrogen fraction increases, the slope of ST,35mm/u’ with Da/Le gradually decreases. In the turbulence intensity range of this experiment, the ut,35mm/μl under nitrogen dilution condition has a larger floating range. The growth rate of ut,35mm/μl at a low equivalence ratio is significantly higher than that at a high equivalence ratio.  相似文献   

12.
Intense strain, turbulence, heat transfer, and mixing with combustion products can affect premixed flames in practical combustion devices. These effects are systematically studied in turbulent premixed CH4/N2/O2 flames using a reactant versus product counterflow system and independently varying bulk strain rate, turbulent Reynolds number, equivalence ratio of the reactant mixture, and temperature of the stoichiometric counterflowing combustion products. The flow field and the turbulent flames are investigated using particle image velocimetry (PIV) measurements and laser-induced fluorescence (LIF) imaging of OH. The OH-LIF images are used to identify the interface between the counterflowing streams, referred to here as the gas mixing layer interface (GMLI). The flame response for different flow conditions is compared in terms of the probability of localized extinction along the GMLI, the turbulent flame brush thickness, and flame position relative to the GMLI, by using an OH-LIF-based progress variable. The probability of localized extinction at the GMLI increases as the separation between the turbulent flame brush and the GMLI decreases. Flame fronts in the vicinity of the GMLI are more likely to extinguish as a result of heat losses, dilution of the reaction zone by the product stream, and large local strain rates. A higher probability of localized extinction at the GMLI is induced by either a larger bulk strain rate or a slower flame speed. As the turbulent Reynolds number increases, the corresponding increase in turbulent flame brush thickness enhances the interactions of the flame fronts with the GMLI. Heat losses are substantially less significant for cases in which the turbulent flame brush is sufficiently separated from the GMLI. For flames in close proximity to the GMLI, the effects of the product stream on the flame front differ for lean and rich reactant mixtures. These disparities are attributed in part to differences in the ignitibility of the reactant mixtures by the hot product stream.  相似文献   

13.
IntroductionThe fundamental meChedsm Of a p~xed flamewith the flow near the front stagnation point of a platewall has receiVed considerable attention in the field ofcombushon, which helps us to realize the behavior offlame Propagation. The CO~thew teChnique,inboduced by Law and coworkers["n, has produced theIndnar flame speed data that are ~ntiy usedextensively fof validation Of chemical ldnetics and themodeling of turbulent combustion. The laminar flamespeed is an important Property of a …  相似文献   

14.
An experimental study of cellular instability of non-premixed opposed-flow tubular flames was conducted burning H2 diluted with CO2 flowing against air. The transitions to cellularity, cellular structures, and extinction conditions were determined as a function of the initial mixture strength, stretch rate, and curvature. The progression of cellular structures from the onset of cells through extinction was analyzed by flame imaging using an intensified CCD camera. Three different procedures of decreasing the Damköhler number (forward process), as well as using those same procedures in the opposite progression of increasing the Damköhler number (backward process) were completed. Significant flame hysteresis was seen and the forward transition occurred at a lower Damköhler number than the backward transition. Mechanical perturbations were conducted to show that the onset of cellularity could be realized at a higher Damköhler number than without perturbations. Once cellular instability was induced, it was possible to perturb the flame into multiple stable cellular states and extinguish the flame at a much higher Damköhler number than without perturbations. Images are shown of rotating cellular flames and a cellular instability regime at an initial mixture strength greater than unity and away from extinction conditions. A qualitative explanation of flame rotation and a general categorizing of three distinct flame regimes is given.  相似文献   

15.
This paper presents experimental data on the flame structure of laminar premixed ammonia and ammonia/hydrogen flames at different equivalence ratios (φ = 0.8, 1.0 and 1.2) and the laminar flame speed of ammonia/hydrogen flames (φ = 0.7–1.5) at 1 atm. Experimental data were compared with modeling results obtained using four detailed chemical-kinetic mechanisms of ammonia oxidation. In general, all models adequately predict the flame structure. However, for the laminar burning velocity, this is not so. The main nitrogen-containing species present in the post-flame zone in significant concentrations are N2 and NO. Experimental data and numerical simulations show that the transition to slightly rich conditions enables to reduce NO concentration. Numerical simulation indicate that increasing the pressure rise also results into reduction of NO formation. However, when using ammonia as a fuel, additional technologies should be employed to reduce NO formation.  相似文献   

16.
17.
The dilution effects of CO2 and H2O on partially premixed swirling syngas flames are investigated with the large eddy simulation (LES) method. The linear-eddy model (LEM) is employed to directly resolve the unclosed molecular diffusion, scalar mixing and chemical reaction processes occurring at subgrid scale level using their specific length and time scales instead of modelling, which makes the LES-LEM approach quite attractive for hydrogen fuel combustion as the obviously different diffusion and reaction characteristics of H2 and H compared to other species in the syngas mixture. Firstly, adding CO2 into the fuel stream can significantly decrease the flame temperature during the partially premixed combustion. The concentration of H and OH radicals decreases upon CO2 dilution and thus the chemical reaction processes are modified. Compared with CO2, H2O is less effective in changing the temperature field because of the chemical effects of H2O. The simultaneous addition of H2O and CO2 as dilution gases with volume ratio 1:1 into the fuel stream is also conducted to identify the effects of H2O and CO2 on partially premixed combustion dynamics by comparing with single H2O and CO2 cases. The obtained results are expected to provide helpful information for the design and operation of gas turbine combustion systems with syngas fuels.  相似文献   

18.
Experimental measurements of adiabatic burning velocity and NO formation in (CH4 + H2) + (O2 + N2) flames are presented. The hydrogen content in the fuel was varied from 0 to 35% and the oxygen content in the air from 20.9 to 16%. Nonstretched flames were stabilized on a perforated plate burner at 1 atm. The heat flux method was used to determine burning velocities under conditions when the net heat loss of the flame is zero. Adiabatic burning velocities of methane + hydrogen + nitrogen + oxygen mixtures were found in satisfactory agreement with the modeling. The NO concentrations in these flames were measured in the burnt gases at a fixed distance from the burner using probe sampling. In lean flames, enrichment by hydrogen has little effect on [NO], while in rich flames, the concentration of nitric oxide decreases significantly. Dilution by nitrogen decreases [NO] at any equivalence ratio. Numerical predictions and trends were found in good agreement with the experiments. Different responses of stretched and nonstretched flames to enrichment by hydrogen are demonstrated and discussed.  相似文献   

19.
Advanced hydrogen gas turbine is a promising technology to achieve near-zero emission of carbon dioxide and higher cycle efficiency. With the increased firing temperature and pressure ratio, nitrogen reinjection combined with dry premixed combustion is promising to achieve the challenging low NOx emission. In this study, the effects of nitrogen dilution and fuel/air premixing characteristics on the flame characteristics and NOx emission are investigated first through simulating one-dimensional premixed flames with a 13-species and 39-reaction mechanism at the elevated engine operation conditions. The variation of flame thicknesses and laminar flame speeds with nitrogen dilution is investigated. The NOx formation is characterized by the flame-front NOx and the constant NOx formation rates in the post-flame region. It is shown that the flame-front NOx is an order of 1 ppm and does not change significantly (within 20%) with nitrogen dilution. In contrast, the NOx formation rates in the post-flame region decrease monotonically with nitrogen dilution due to the decrease of oxygen concentration. A detailed analysis of NOx formation reveals that the N2O pathway is significant and it can account for at least 20% of the NOx formation in the post-flame region. Then an analytic model considering both the extended Zeldovich mechanism and the N2O pathway is constructed by assuming the involved radicals being in chemical equilibrium. The model can be employed to efficiently estimate the NOx formation in fully premixed hydrogen gas turbines. Next, the effects of fuel/air premixing characteristics on the mean NOx formation rate in the post-flame region are quantified by reconstructing the PDF of mixture fraction. It is shown that without the nitrogen dilution, the NOx formation rate increases dramatically with fuel/air unmixedness due to the existence of local hot spots. Nitrogen dilution can dramatically reduce the NOx formation rate at the same level of unmixedness through reducing the local hot spots. Moreover, nitrogen dilution reduces the sensitivity of the NOx formation rate to fuel/air unmixedness, which greatly alleviates the mixing requirement for the premixing nozzles in gas turbines. Finally, a model for the estimation of NOx emission is constructed, which builds the connection between NOx emission, nitrogen dilution, unmixedness and flow residence time in combustors.  相似文献   

20.
Laminar burning velocities of premixed flames provide essential data in combustion studies. To facilitate an in situ monitoring in the field, a method using the annular diverging tube (ADT) and its improved version of the annular stepwise diverging tube (ASDT) were introduced in previous studies. Although the reliability and applicability of these methods has been verified, additional improvements are necessary for the field application. In this study, an assembled annular stepwise diverging tube (A-ASDT) was introduced. Each step-unit was fabricated separately to have higher dimensional precision and to selectively assemble suitable step-units. Thus, the burner configuration could be easily adjusted, and the experimental resolution could be controlled. Heat transfer through the burner was suppressed to extend the duration of the experiment. The characteristics of the critical flame-propagation-velocity (FPV) that are less affected by the channel gap scale were investigated in more detail. The critical FPVs were comparable to the laminar burning velocities for methane, propane, and DME. The quenching distances could be measured easily, and the quenching Peclet number was directly evaluated. In conclusion, in our knowledge, this A-ASDT may be one of the fastest, easiest, and approvable methods for the prediction of the laminar burning velocity and the quenching distance. Therefore, it can be adopted in the fuel-consuming field to monitor the characteristics of flammable mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号