首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In comparison with CuAl (Al: 0.2 and 0.5 wt.%) alloys, corrosion resistance (CR) of CuMg (Mg: 0.12 and 0.34 wt.%) alloys was studied at 673-1173 K in atmospheric O2. All the samples were pre-annealed at 873 K in atmospheric H2. The CR of CuMg alloys at 673-973 K is improved in contrast to a pure Cu but much poorer than that of CuAl alloys, while the improvement can hardly be observed for CuMg alloys at and above 1073 K, which is similar to CuAl alloys. The poorer CR of CuMg alloys compared with that of CuAl alloys at 673-973 K is largely attributed to the incorporation of Cu in the MgO surface layer and the low Pilling-Bedworth ratio of CuMg-O system smaller than unity, and the vanishing of CR for CuMg alloys at and above 1073 K is ascribed to the instability of the MgO layer at the Cu2O/CuMg interface.  相似文献   

2.
近年来高熵合金因具有许多优于传统合金的性能备受瞩目,而高温氧化问题大大限制了其发展应用。多元组成使高熵合金的高温氧化过程不同于单一金属,不同氧化阶段的动力学规律有很大不同。氧化前期多种元素发生氧化反应,氧化物种类和氧化膜结构随时间发生变化,直到稳定氧化阶段氧化产物才固定存在。本文从初期选择性氧化、过渡态氧化和稳定氧化期3个阶段深入剖析高熵合金高温氧化各个过程的详细机理,并总结相应的改善高温抗氧化性能的方法,为高熵合金材料设计和性能调控提供重要的理论依据。  相似文献   

3.
Y.S. Li  Y. Niu 《Corrosion Science》2007,49(4):1799-1815
The corrosion behaviour of pure iron, pure chromium, and aluminium/silicon alloyed Fe-Cr materials was investigated at 650 °C in air accompanied by gaseous or solid KCl salt. The corrosion rates of these materials with KCl salt are high and they are strongly affected by the salt amount, the types of the alloying elements and the concentration of chromium. The dominant degradation mechanism for the chromia-forming alloys by KCl attack is the preferential formation of potassium chromate over the conventionally protective chromia, characterized by typical features of bubbles, cracks, volatility and severe spallation for the corrosion products. A detrimental effect of chromium is confirmed. Al-alloying addition to Fe-Cr alloys is beneficial by enhancing the corrosion resistance. Silicon is more effective in promoting the corrosion resistance of Fe-Cr alloys by forming a stable and dense oxide layer in the inner zone which suppresses the rapid growth of iron oxides.  相似文献   

4.
This paper presents a non-destructive measurement method that enables identification and characterization of phenomena during internal oxidation of metallic materials as well as monitoring the kinetics of internal oxidation using “in-situ” electrical resistance measurements. A special laboratory device, based on the unique measurement cell, for the electrical resistance measurements at high temperatures and the model for electrical resistance transformation into an instantaneous microstructure were developed. To accomplish this, the process of internal oxidation was divided into the sequence of the key partial reactions that were presented in the model as the parallel and/or serial connected time variable resistors in the electrical circuit. The validity of the transformation model was experimentally confirmed by internal oxidation of Ag-Sn (2 at.% Sn) alloy at different oxidation temperatures in air atmosphere. The comparison of the results obtained by “in-situ” electrical resistance measurements with those obtained by metallographic analysis and Wagner’s theory shows that the novel method presents a more effective tool for monitoring of internal oxidation kinetics. The method identifies also the microstructural defects and their influences on the kinetics of internal oxidation.  相似文献   

5.
H.T. Ma  C.H. Zhou  L. Wang 《Corrosion Science》2009,51(8):1861-1867
Pure Fe, Cr and Fe-Cr binary alloys were corroded in O2 containing 298 ppm KCl vapour at 750 °C. The corrosion kinetics were determined, and the microstructure and the composition of oxide scales were examined. During corrosion process, KCl vapour reacted with the formed oxide scales and generated Cl2 gas. As Cl2 gas introduced the active oxidation, a multilayer oxide scales consisted of an outmost Fe2O3 layer and an inner Cr2O3 layer formed on the Fe-Cr alloys with lower Cr concentration. In the case of Fe-60Cr or Fe-80Cr alloys, monolayer Cr2O3 formed as the healing oxidation process. However, multilayer Cr2O3 formed on pure Cr.  相似文献   

6.
This paper describes the dynamic and isothermal oxidation behavior of three different FeCo‐based Fe38.5Co38.5Nb7Cu1B15, Fe36Co36Nb7Si10B 11 and Fe33.5Co33.5Nb7Si15B11 alloys and one traditional FINEMET Fe73Nb3Cu1Si15.5B7.5 alloy. Dynamic and isothermal oxidation measurements in controlled oxidizing atmosphere were performed and the oxidation apparent energy as well as the oxidation behavior was obtained. SEM observations were carried out in order to characterize the oxide layer formed during the oxidation measurements. The apparent activation oxidation energy found for the Fe36Co36Nb7Si10B11, Fe33.5Co33.5Nb7Si15B11 and Fe73Nb3Cu1Si15.5B7.5 alloys was about 35 kJ/mol and for the Fe38.5Co38.5Nb7Cu1B15 alloy was about 70 kJ/mol.  相似文献   

7.
Binary Fe-Cr alloys were subjected to cyclic oxidation at 600, 700 and 950 °C in flowing gases of Ar-20O2 and Ar-20O2-5H2O (vol.%). The minimum chromium concentration required to achieve protective scale growth decreased as temperature increased from 600 to 700 °C. This change is attributed to faster chromium diffusion at higher temperature. Conversely, this minimum chromium level increased when the temperature was raised from 700 to 950 °C. This is attributed to faster scale growth, leading to its rapid mechanical failure, along with formation of slow-diffusing austenite. Water vapour accelerated scaling, leading to a need for higher chromium concentrations to resist breakaway oxidation.  相似文献   

8.
Isothermal oxidation of Al65Cr27Fe8 and Al80Cr15Fe5 was studied in the 600–1080 °C range. Formation of transient alumina layers is obtained up to 900 °C. On Al65Cr27Fe8 transient to α-phase transformations occur when performing oxidation at 1000 °C, together with the possible appearance of (Al0.9Cr0.1)2O3. At 1080 °C, direct formation of α-alumina is obtained. On Al80Cr15Fe5, spallation of the oxide layer during the cooling stage is observed following oxidation at 800 and 900 °C, revealing thermal etching of the underneath alloy surface. At 1050 °C the α-Al2O3 scale is directly formed but plastic deformation and recrystallization of the underneath alloy into several intermetallic phases is observed.  相似文献   

9.
Anodic oxidation of copper, nickel and two copper-nickel alloys was studied in cryolite melts at 1000 °C. In an oxide-free melt, anodic dissolution of each material was observed, and the dissolution potential increases with the content of copper. SEM characterization of a Cu55-Ni45 alloy showed that nickel is selectively dissolved according to a de-alloying process. In an alumina-containing melt, a partial passivation occurs at the copper-containing electrodes, at potentials below the oxygen evolution potential. A passive film forms on the copper electrode, while on the nickel electrode no dense oxide layer develops. Copper-nickel alloys were found to form a mixed oxide layer. At higher potentials, the formation of oxygen bubbles on the electrodes results in a degradation of the passive films and a strong corrosion.  相似文献   

10.
The oxidation behavior of a number of selected ferritic steels in a simulated steam environment at temperatures between 550 and 650 °C was studied. In the prevailing test gas, some of the studied 9-12% Cr steels tended to exhibit an anomalous temperature dependence of the oxidation behavior. This means, that the oxidation rates do not steadily increase with increasing temperature. At higher temperatures, some of the studied steels tend to form a very thin and protective oxide scale whereas at lower temperature rapidly growing, less-protective oxides are being developed. The anomalous temperature dependence is related to differences in chromium distribution in the inner part of the oxide scale. The effect is observed for steels with intermediate-Cr contents (∼10-12%) whereas steels with either lower or higher Cr contents exhibit an increasing oxidation rate with increasing temperature.  相似文献   

11.
The influence of eight different chlorides (BaCl2, CaCl2, KCl, LiCl, MgCl2, NaCl, PbCl2, and ZnCl2) on the oxidation of metallic chromium powder was studied at four different temperatures (400 °C, 500 °C, 550 °C, and 600 °C) under dry conditions in synthetic air by using a DTA/TG-apparatus. BaCl2, CaCl2, and MgCl2 did not react with chromium at any of the studied temperatures. ZnCl2 evaporated already before the air was introduced. KCl, LiCl, NaCl, and PbCl2 were all found to be reactive and to accelerate the oxidation of chromium. LiCl reacted only at 600 °C, whereas the other three chlorides mentioned above reacted from 500 °C upwards.  相似文献   

12.
Internal oxidation of dilute silver alloys containing Al, Mg, Zn, Cu, and Sn was studied in air at temperatures between 573 K and 1173 K. Electrical resistivity, gravimetric, and gas-extraction measurements were made. The general trend of the resistivity is that it increases upon oxidation at lower temperatures and the resistivity decreases at higher temperatures in all of these alloys except Ag-Mg, in which it increases even at 1173 K. The increase in resistivity is considered to be related to the formation of clusters having excess oxygen. A detailed investigation was performed on Ag-Al alloys. The O/Al ratio in the clusters in Ag-2.2 at.% Al is much higher on oxidation at 773 K than for stoichiometric Al2O3 at 1173 K. The clusters release the excess oxygen on subsequent annealing at high temperatures, and decompose to stable Al2O3 at 1173 K.  相似文献   

13.
The oxidation behaviour of ternary NixFeyCoz alloys (where x/y (wt) = 1 and 1.85; z = 0, 10, 30 and 50 wt.%) was studied in air at 800 °C. Alloys were found to follow complex oxidation kinetics, with the highest oxidation rates observed for alloys having 50 wt.% Co. Significant improvements in oxidation resistance were achieved by addition of 10 and 30 wt.% Co to the Ni–Fe system. The decrease in oxidation rate was associated with suppression of Fe2O3 formation in preference for (Co,Ni)xFe3−xO4 growth. The results were discussed in light of the materials requirements for inert anodes for aluminium electrolysis.  相似文献   

14.
An Al96.1–Cu3.9 to Al51.4–Cu48.6 material library was obtained by thermal co-deposition and characterized by EDX and XRD. The crystallographic data reveals the presence of Al2Cu and pure aluminium depending on the film composition and following the stoichiometry. Utilizing a scanning droplet cell setup, the zero current potential for anodization, the oxide formation factor and the dielectric constant of the oxide formed are presented with high resolution along the composition gradient.While the dielectric constant of the oxide formed remains nearly unaffected by the increasing copper content of the base material along the composition gradient, the zero current potential shows well defined steps between 6.9 and 8.5 at.% as well as between 20.9 and 26.7 at.% copper indicating an increased thickness of the native oxide present on the film. Additionally, starting around 25 at.% copper, oxygen evolution gradually superimposes the oxide growth and in turn significantly reduces the current efficiency for anodization. The formation of the intermetallic phase Al2Cu was linked to both phenomena as it promotes the growth of native oxides and current leakage by oxygen evolution.  相似文献   

15.
A cast HP ModNb alloy (Fe-25Cr-35Ni-1Nb, wt.%) was oxidised and carburised in CO-CO2 corresponding to aC = 0.1 and pO2 = 3 × 10−16 atm at 1080 °C. Formation of an external, chromium-rich oxide scale led to depletion of this metal in a deep alloy subsurface zone. Within that zone, secondary chromium-rich carbides dissolved, primary carbides oxidised, solute silicon and aluminium internally oxidised, and extensive porosity developed. Pore volumes correspond to the difference between metal loss by scaling and metal displacement by internal oxidation, assuming the scale-metal interface to be fixed. The pores are concluded to be Kirkendall voids.  相似文献   

16.
The oxidation of Zr50Cu50 alloy at 500-700 °C is characterized by preferential oxidation of zirconium, while the excess of copper is accumulated at the alloy-oxide interface forming the Zr14Cu51 phase. The strong reaction at 800 and 850 °C resulted in the total corrosion of the specimens in 21 and 15 h, respectively. The oxidation at elevated temperatures showed an anomalous decrease of the oxygen consumption rate in the temperature range 930-1000 °C, corresponding to the preferentially oriented crystallites of ZrO2 in the oxide scale at 900 and 1000 °C. The oxide layer consists of ZrO2 and CuO in the whole temperature interval of the oxidation. The reaction kinetics obeys a parabolic rate law. An activation energy of 92.0 ± 0.3 kJ/mol has been estimated.  相似文献   

17.
The effects of the electrical discharge alloying (EDA) process on improving the high temperature oxidation resistance of the Ni-based superalloy Haynes 230 have been investigated. The 85 at.% Al and 15 at.% Mo composite electrode provided the surface alloying materials. An Al-rich layer is produced on the surface of the EDA specimen alloyed with positive electrode polarity, whereas, many discontinuous piled layers are attached to the surface of the EDA superalloy when negative electrode polarity is selected. The oxidation resistance of the specimen alloyed with positive electrode polarity is better than that of the unalloyed superalloy, and the effective temperature of oxidation resistance of the alloyed layer can be achieved to 1100 °C. Conversely, the oxidation resistance of the other EDA specimen alloyed with negative electrode polarity is even worse than that of the unalloyed superalloy.  相似文献   

18.
A mechanism of oxide film growth via outward iron cation migration during thermal oxidation of Fe-Ni-Co alloys in air, steam and carbon dioxide at 485°C is suggested. This mechanism is supported by literature data, and experimental results obtained by Auger electron spectroscopy and depth profile determination, SEM-XES analysis and X-ray diffraction.  相似文献   

19.
Oxidation behaviour of AZ91D was investigated by heating the alloy granules in a ceramic mould between 650 and 800 °C, for 30 and 60 min. The granules failed to melt in unprotected environment even when the temperature was increased to 800 °C. Raising the temperature increased the oxides thickness linearly, however, oxidation enhanced beyond 750 °C with severe mould–metal reaction and selective oxidation. Heating duration showed more pronounced effect on oxide formation compared to heating temperature. MgO was found to be the dominant compound in oxidation products. Aluminium participated during severe oxidation or combustion to some extent whilst no zinc oxide was detected.  相似文献   

20.
Oxidation of nickel- and cobalt-base alloys, containing small additions of a higher valent second metal, in oxygen or air at high temperatures results in the formation of relatively complicated scale morphologies which change subtly with increasing additions of the second element and its characteristics. The various factors that can influence the oxidation behavior of such alloys are assessed and correlated with the oxidation kinetics and scale morphology types. For very dilute alloys the increase in oxidation rate compared with that of the corresponding pure metal (nickel or cobalt) is largely due to doping of the external oxides. However, once the solubility limit of the second metal in this oxide is exceeded, additional increases in second metal content of the alloy can either increase further or decrease the oxidation rate. The exact behavior depends on the relative interplay of factors such as internal oxide formation and coalescence, blocking effects of incorporated internal oxide or pores in the scale, short-circuit paths through the scale, doping, and the relative diffusion rates of the two metals in the scale. Probable rate-determining steps for oxidation of different alloy composition ranges are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号