共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
基于奇异值分解的欠定盲信号分离新方法及应用 总被引:8,自引:3,他引:5
提出一种利用相空间重构和奇异值分解实现信号升维,从而对欠定信号进行盲分离的新方法。选择合理的时间延迟和嵌入维数对信号进行相空间重构而得到吸引子轨迹矩阵,对该矩阵进行奇异值分解,并根据不同信号的奇异值分布特性选择合适的奇异值进行逆变换,从而可以得到源信号的新的线性组合,实现了信号升维。随后对新混合信号与原混合信号之间的关系进行讨论,分析二者之间的相关性,证明了该方法的合理性。利用该方法首先分析几种常见信号如正弦信号、调频信号、调幅信号等的奇异值分布特性,研究这些信号与白噪声混合时的欠定盲分离,并将其用于实测齿轮故障信号的盲分离,研究表明该方法能够识别齿轮系统的典型故障,取得了较好效果。 相似文献
3.
张志友 《仪表技术与传感器》2012,(5):106-107
利用盲信号分离技术,采用热催化传感器,对CH4和CO混合气体分离。根据热催化传感器在不同温度下具有不同气体检测灵敏度的特点,使用单一热催化传感器,将在2种温度下检测的数据构成1个二维矩阵,采用最大信噪比盲信号分离算法,对6组测量数据进行分析。研究结果表明:此方法可以较好的实现用单一热催化传感器分离CH4和CO的混合气体。 相似文献
4.
基于小波变换的盲信号分离的神经网络方法 总被引:8,自引:2,他引:8
提出一种新的盲信号分离的神经网络方法,该方法将小波变换和独立分量分析(ICA,Independent Component Analysis)相结合。利用小波变换的滤噪作用,将混合在原始信号中的部分高频噪声滤除后,再重构原始信号作为ICA的输入信号,有效地克服了现有ICA算法不能将噪声从源信号中分离的缺陷。实验结果表明,将该方法用于多通道脑电信号的盲分离是很有效的。 相似文献
5.
基于时频分析的欠定信号盲分离与微弱特征提取 总被引:2,自引:0,他引:2
盲源分离对于多振源信号的故障诊断与识别是一种有效的方法,但是传统的盲源分离算法都是针对观察信号大于或等于源信号的情况,但对于观察信号小于源信号的欠定盲分离问题,这在很大程度上制约了盲源分离的实际应用。通过应用经验模式分解和时频分析对非平稳信号分析的优势,提出基于时频分析的欠定盲源分离方法进行设备微弱特征提取。对振动信号进行经验模式分解,并根据分解得到的内蕴模式分量估计源信号个数并选择最优的观察信号,将振动信号与选择的最优观察信号组成新的观察信号进行基于时频分析的盲源分离,通过对仿真信号和齿轮箱实测信号进行验证分析。并与基于独立分量分析的盲源分离算法进行对比,研究表明基于时频分析的盲源分离对混合信号具有更好的分离效果,能够较好地对微弱特征进行提取。 相似文献
6.
7.
宋英 《机械工程与自动化》2010,(6)
给出了欠定情况下的盲分离模型,从时域和频域对信号的稀疏特性做了简要的陈述.基于信号稀疏特性的欠定情况下盲分离一般采用两步法,对其核心步骤混叠分离矩阵A的估计中的聚类方法做了总结、归纳.对比了几种主要聚类方法的优缺点,并对今后欠定情况下混叠矩阵A的研究方向做了进一步展望. 相似文献
8.
针对欠定情况下传统盲源分离(blind source separation,简称BSS)算法无法有效识别结构模态参数的问题,研究了一种不受传感器数量限制的BSS算法。算法主要分为振型矩阵估计与单模态信号分离两步。首先,利用各阶模态响应信号在时频域中的聚类特性估计结构的模态振型;然后,在已知振型矩阵的基础上,通过L1范数最小化算法分离出多个单模态信号;最后,利用单模态参数识别方法提取各阶模态的频率与阻尼比。经仿真与实验验证,本研究方法可以准确识别出结构的各阶模态参数,同时对测量噪声不敏感,具有很好的噪声鲁棒性,在工程实践中具有一定的应用价值。 相似文献
9.
基于局域均值分解的机械故障欠定盲源分离方法研究 总被引:14,自引:0,他引:14
结合局域均值分解(Local mean decomposition,LMD)和盲源分离各自的特点,提出一种基于局域均值分解的欠定盲源分离方法.该方法利用LMD对观测信号进行分解,得到一系列的生产函数分量,将所得到的生产函数(Production functions,PF)分量和原观测信号组成新的观测信号.对构成的新观测信号进行白化处理和联合近似对角化,得到源信号的估计.该方法能有效解决传统的盲源分离方法要求源信号满足非高斯、平稳和相互独立的假设,且要求观测信号数多于源数的不足等问题.仿真结果表明,所提出的方法是有效的,在处理非平稳信号混合的欠定盲分离方面,比传统时频域的盲源分离方法得到了更好的分离效果.将提出的方法应用到滚动轴承的混合故障分离中,试验结果进一步验证该方法的有效性. 相似文献
10.
针对以往稀疏盲信号分离算法中恢复源信号时所采用的线性规划或最短路径法计算相对复杂,提出了一种基于子空间法的机械故障欠定盲源信号恢复方法。该算法假设源信号由两个正交向量构成:其中一个向量位于混叠矩阵A的行空间中,另一个位于A的零空间中,位于行空间中的向量可以通过A的Moore-Penrose伪逆得到,位于零空间中的向量通过贝叶斯估计得到。新算法容易实现,分离速度快,能够很好地满足盲分离对速度的要求。将其用于实测齿轮故障信号的盲分离,研究表明该方法能够分离齿轮系统的典型故障,取得了较好效果。 相似文献
11.
针对滚动轴承复合故障信号中故障特征难以分离的问题,提出了基于多分辨奇异值分解(SVD)和独立分量分析(ICA)的复合故障诊断方法。首先利用多分辨SVD将复合故障振动信号分解为几个分量实现维数的增加;然后将分解得到的分量组合为混合信号,并利用ICA进行欠定盲分离;最后对分离后的独立分量进行Hilbert包络解调,由此实现对复合故障特征信息的分离和故障识别。通过对滚动轴承内外圈复合故障的试验信号分析表明,该方法可以有效地分离和提取轴承复合故障的特征信息。 相似文献
12.
滚动轴承的故障信号是一种典型的非线性非平稳信号,其信号中常常混有噪声信号及其他干扰成分。提出了一种基于流形学习的滚动轴承故障盲源分离方法,首先,利用经验模态分解(empirical mode decomposition,简称EMD)对单通道模拟信号进行分解,对得到的多通道信号构造其协方差矩阵,计算矩阵的奇异值下降速比得到原始信号数目;其次,利用峭度等指标选择最优观测信号,利用核主成分分析(kernel principal components analysis,简称KPCA)提取信号的流形成分;最后,利用快速独立成分分析(fast independent component analysis,简称Fast ICA)还原得到源信号。该方法不但解决了故障信号的欠定盲源分离问题,还提出了最优观测信号的确定准则,并通过实例验证了方法的有效性。 相似文献
13.
14.
15.
针对机房设备混合信号难以提取有用信息,提出了多参数的振声诊断方法。应用最小互信息梯度下降的盲分离算法,通过展开边缘熵和修正四阶累积量估计值的方法改善算法性能,在故障源数量未知且可能大于传感器数量的情况下,根据信息源之间的独立性测度关系依次提取最显著的特征值。仿真结果证明,改进算法估计误差减小且算法可靠。在诊断实例中,首先,分离机房内的混合噪声信号以确定主要故障来源;然后,采集故障源的振动信号进行非线性盲分离,提取热泵机组压缩机不对中、齿轮啮合不良和碰磨的故障特征;最后,根据分离的振源信号特征识别故障类型,建立基于盲源分离算法的大空间设备群的振声诊断方法。 相似文献
16.
传统源数估计方法要求传感器数大于或等于源数,而盲信号很难满足这个条件,为此,提出了一种新的源数估计方法。该方法在传感器数与源数关系不明确的情况下,仅根据观测信号的功率谱密度函数的比值即可对源数作出估计。通过理论分析、仿真和实验,证明了该方法的有效性。 相似文献