首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a CMOS 0.8-μm switched-current (SI) fourth-order bandpass ΣΔ modulator (BP-ΣΔM) IC capable of handling signals up to 1.63 MHz with 105-bit resolution and 60-mW power consumption from a 5-V supply voltage. This modulator Is intended for direct A/D conversion of narrow-band signals within the commercial AM band, from 530 kHz to 1.6 MHz. Its architecture is obtained by applying a low-pass-to-bandpass transformation (z-1 →-z-2) to a 1-bit second-order low-pass ΣΔ modulator (LP-ΣΔM). The design of basic building blocks is based upon a detailed analysis of the influence of SI errors on the modulator performance, followed by design optimization. Memory-cell errors have been identified as the dominant ones. In order to attenuate these errors, fully differential regulated-folded cascode memory cells are employed. Measurements show a best SNR peak of 65 dB for signals of 10-kHz bandwidth and an intermediate frequency (IF) of 1.63 MHz. A correct noise-shaping filtering is achieved with a sampling frequency of up to 16 MHz  相似文献   

2.
The design of a low-voltage and low-power ΔΣ analog-to-digital (A/D) converter is presented. A third-order single-loop ΔΣ modulator topology is implemented with the differential modified switched op-amp technique. The modulator topology has been transformed as to accommodate half-delay integrators. Dedicated low-voltage circuit building blocks, such as a class AB operational transconductance amplifier, a common-mode feedback amplifier, and a comparator are treated, as well as low-voltage design techniques. The influence of very low supply voltage on power consumption is discussed. Measurement results of the 900-mV ΔΣ A/D converter show a 77-dB dynamic range in a 16-kHz bandwidth and a 62-dB peak signal-to-noise ratio for a 40-μW power consumption  相似文献   

3.
This paper presents a second-order delta-sigma (ΔΣ) modulator fabricated in a 70 GHz (fT), 90 GHz (fmax) AlInAs-GaInAs heterojunction bipolar transistor (HBT) process on InP substrates. The modulator is a continuous time, fully differential circuit operated from ±5 volt supplies and dissipates 1 W. At a sample rate of 3.2 GHz and a signal bandwidth of 50 MHz (OSR=32100 MSPS Nyquist rate) the modulator demonstrates a Spur Free Dynamic Range (SFDR) of 71 dB (12-b dynamic range). The modulator achieves the ideal signal-to-noise ratio (SNR) of 55 dB for a second-order modulator at an oversampling ratio (OSR) of 32. The design of a digital decimation filter for this modulator is complete and the filter is currently in fabrication in the same technology. This work demonstrates the first ΔΣ modulator in III-V technology with ideal performance and provides the foundation for extending the use of ΔΣ modulator analog-to-digital converters (ADC's) to radio frequencies (RF)  相似文献   

4.
The design and implementation of a very low supply voltage/low power ΔΣ modulator is presented. It is based on the switched-opamp technique, which allows low voltage operation with a standard process and without voltage multiplication. The design methodology is illustrated with a second-order single-loop ΔΣ modulator. The chip is implemented in a 0.7-μm CMOS process with standard threshold voltages. The power supply is 1.5 V and the power dissipation is only 100 μW. The measured dynamic range in the speech bandwidth of 300-3400 Hz is 12 b. The total harmonic distortion (THD) is lower than -72 dB  相似文献   

5.
The authors present a fourth-order bandpass ΣΔ switched-current modulator IC in 0.8 μm CMOS single-poly technology. It is the first reported integrated circuit realisation of a bandpass ΣΔ modulator using switched-current circuits. Its architecture is obtained by applying a lowpass to bandpass transformation (z1→-z2) to a second-order lowpass modulator. It has been realised using fully-differential circuitry with common-mode feedback. Measurements show 8 bit dynamic range up to 5 MHz clock frequency  相似文献   

6.
7.
The trend toward digital signal processing in communication systems has resulted in a large demand for fast accurate analog-to-digital (A/D) converters, and advances in VLSI technology have made ΔΣ modulator-based A/D converters attractive solutions. However, rigorous theoretical analyses have only been performed for the simplest ΔΣ modulator architectures. Existing analyses of more complicated ΔΣ modulators usually rely on approximations and computer simulations. In the paper, a rigorous analysis of the granular quantization noise in a general class of ΔΣ modulators is developed. Under the assumption that some input-referred circuit noise or dither is present, the second-order asymptotic statistics of the granular quantization noise sequences are determined and ergodic properties are derived  相似文献   

8.
A signal adaptive control architecture for a second-order ΔΣ modulator design is presented. This architecture effectively reduces the power dissipation and the distortion of the first stage in the modulator. The function of this architecture is to switch off the DAC feedback signal to the first stage during some iterations, and to compensate the signal at the second stage, in an adaptive manner  相似文献   

9.
In this paper, the design of a continuous-time baseband sigma-delta (ΣΔ) modulator with an integrated mixer for intermediate-frequency (IF) analog-to-digital conversion is presented. This highly linear IF ΣΔ modulator digitizes a GSM channel at intermediate frequencies up to 50 MHz. The sampling rate is not related to the input IF and is 13.0 MHz in this design. Power consumption is 1.8 mW from a 2.5-V supply. Measured dynamic range is 82 dB, and third-order intermodulation distortion is -84 dB for two -6-dBV IF input tones. Two modulators in quadrature configuration provide 200-kHz GSM bandwidth. Active area of a single IF ΣΔ modulator is 0.2 mm2 in 0.35-μm CMOS  相似文献   

10.
A study is presented into the transient response of SC integrators considering amplifier finite bandwidth, slew-rate, and parasitic capacitors during, unlike previous models, both the integration and sampling phases. The model is validated by experimental results on a second-order ΣΔ modulator and provides more reliable estimations of the defective settling in high-speed designs than previously reported models  相似文献   

11.
A low-voltage high-linearity MOSFET-only ΣΔ modulator for speech band applications is presented. The modulator uses substrate biased MOSFETs in the depletion region as capacitors, linearized by a series compensation technique. A second-order fully differential single-loop architecture has been realized in a conventional 0.25-μm digital n-well CMOS process without extra layers for capacitors. An SNDR of 72 dB and an SNR of 77 dB is obtained with 8-kHz signal bandwidth at an oversampling ratio of 64. The circuit consumes about 1 mW from a single 1.8-V power supply and occupies a core area of 0.08 mm2  相似文献   

12.
This paper presents a CMOS two-dimensional (2-D) vector magnetic sensor system integrating two planar microfluxgate sensors and the complete electronics for sensor excitation and signal readout. The system is based on an industrial 0.8-μm double-poly, double-metal CMOS technology with ferromagnetic NiFeMo cores added in a simple postprocessing sequence. The fluxgate sensors are embedded in a ΣΔ analog-to-digital converter for a stable and precise digital detection of weak magnetic fields. A cascaded ΣΔ modulator topology is utilized to obtain second-order noise shaping and to suppress pattern noise. Within the range of ±50 μT, the system nonlinearity is less than 1.5 μT. The angular resolution as a 2D vector sensor is less than 4° for a measured magnetic induction of 50 μT. This makes the 2-D microfluxgate magnetometer suitable for use as fully integrated electronic compass  相似文献   

13.
We present a tool that starting from high-level specifications of switched-capacitor (SC) /spl Sigma//spl Delta/ modulators calculates optimum specifications for their building blocks and then optimum sizes for the block schematics. At both design levels, optimization is performed using statistical techniques to enable global design and innovative heuristics for increased computer efficiency as compared with conventional statistical optimization. The tool uses an equation-based approach at the modulator level, a simulation-based approach at the cell level, and incorporates an advanced /spl Sigma//spl Delta/ behavioral simulator for monitoring and design space exploration. We include measurements taken from two silicon prototypes: (1) a 16 b @ 16 kHz output rate second-order /spl Sigma//spl Delta/ modulator; and (2) a 17 b @ 40 kHz output rate fourth-order /spl Sigma//spl Delta/ modulator. Both use SC fully differential circuits and were designed using the proposed tool and manufactured in a 1.2 /spl mu/m CMOS double-metal double-poly technology.<>  相似文献   

14.
A double-sampling pseudo-two-path bandpass ΔΣ modulator is proposed. This modulator has an output rate equal to twice the clock rate, uses n/2 operational amplifiers (op-amps) for an nth-older noise transfer function, and has reduced clock feedthrough in the signal path band. The required clocks can be simpler to implement than the conventional pseudo-two-path techniques. The measured signal-to-noise ratio and dynamic range of the fourth-order double-sampling pseudo-two-path bandpass ΔΣ modulator in a 30-kHz bandwidth at a center frequency of 2.5 MHz (at a clock frequency of 5 MHz) are 62 and 68 dB, respectively  相似文献   

15.
The design of a low-power, low-voltage, 12-b 8-kHz bandwidth ΣΔ modulator for high-quality voice that consumes only 0.34 mW at 1.95 V supply is described. The modulator employs a special architecture in which a third-order modulator is stabilized by a local feedback loop around each integrator. Unlike multistage ΣΔ modulators, this architecture is very tolerant to the modest dc gain of low voltage op-amps. The architecture, together with special circuit techniques, permits a low-voltage switched capacitor implementation at 1.95 V-3.3 V supply using standard 1.2-μm CMOS technology  相似文献   

16.
This paper presents the design of a 3.3V CMOS switched-current (SI) second-order sigma-delta modulator for A/D converters intended for radio front-end applications. The effects of non-ideal behaviours of the building blocks on the total performance of a SI double-integrator sigma-delta modulator (DISDM) were analysed and simulated by means of multi level (SpectreHDL-level, transistor-level) and mixed level simulations. The implementation of a SI DISDM concerning the practical issues is discussed. A second-generation cascode SI integrator was optimized to meet the desired speed and to diminish the non-ideal errors. The SI DISDM can operate at the sampling rate of 80MHz and over based on the parasitic-extracted transistor-level simulations.  相似文献   

17.
The basic operation of a fractional-n frequency synthesizer has been published, but to date little has been presented on the digital ΔΣ modulators which are required to drive such synthesizers. This paper provides a tutorial overview, which relates digital ΔΣ modulation to other applications of ΔΣ modulation where the literature is more complete. The paper then presents a digital ΔΣ modulator architecture which is economical and efficient and which is practical to realize with commercially available components in comparison with other possible implementations which require extensive custom very large-scale integration (VLSI). A demonstration is made of a 28-b modulator using the architecture presented, which provides a 25-MHz tuning bandwidth and <1-Hz frequency resolution. The modulator is demonstrated in an 800-MHz frequency synthesizer having phase noise of -90 dBC/Hz at a 30-kHz offset  相似文献   

18.
A second-order audio analog-to-digital converter (ADC) ΔΣ modulator using a second-order 33-level tree-structured mismatch-shaping digital-to-analog converter (DAC) is presented. Key logic simplifications in the design of the mismatch-shaping DAC encoder are shown which yield the lowest complexity second-order mismatch-shaping DAC known to the authors. The phenomenon of signal-dependent DAC noise modulation in mismatch-shaping DACs is illustrated, and a modified second-order input-layer switching block is presented which reduces inband DAC noise modulation by 6 dB. Implementation details and measured performance of the 3.3-V 0.5-μm single-poly CMOS prototype are presented. All 12 prototype devices achieve better than 100-dB signal-to-noise-and-distortion and 102-dB dynamic range over a 10-20 kHz measurement bandwidth  相似文献   

19.
It is shown that for delta-sigma (ΣΔ) frequency-to-digital conversion (FDC) there is no need for a ΣΔ modulator, since a limited FM signal itself may be considered as an asynchronous ΣΔ bit-stream. By feeding the limited FM signal directly to a sinc2 ΣΔ decimator, a triangularly weighted zero-crossing counter FDC is introduced, providing ΣΔ noise shaping. The results measured confirm the theory  相似文献   

20.
张敏  林伟 《电子器件》2012,35(3):327-330
过采样技术给在VLSI领域的高精度数模转化器的实现提供帮助.该文提供了一个在时间上连续的2-2-2级联Sigma-Delta调制器结构设计.该级联调制器由3级二阶振荡环路滤波器,1-bit量化器和反馈部分的数模转化器组成.在MATLAB环境下,通过大量仿真验证最后得出:在采样率为50 MHz、5V工作电压、过采样比为32的条件下,利用CMOS 0.18μm 工艺,该调制器其SQNR为87 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号