首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations in the visible and infrared spectral bands from the Imager instrument onboard Geostationary Operational Environmental Satellite (GOES) have been used to derive snow depth. The technique makes use of correlation between depth of the snow pack and satellite-derived subpixel fractional snow cover. Previous efforts to infer snow depth from satellite data with this technique were focused on grasslands and croplands, where the snow depth/snow fraction relationship is most pronounced. In this paper we improve the retrieval algorithm to extend snow depth estimates to forested areas. The enhanced algorithm accounts for the tree cover fraction and for the type of forest, deciduous or coniferous.The developed technique was used to derive maps of snow depth over mid-latitude areas of North America during winter seasons of 2003-2004 and 2004-2005. Satellite-based snow depth maps were produced daily at 4 km spatial resolution. To validate the retrievals we compared them with surface observations of snow depth and with the snow depth analysis prepared at the NOAA National Operational Hydrological Remote Sensing Center (NOHRSC). The estimated retrieval error was about 30% for snow depths below 30 cm and increased to 50% for snow depths ranging from 30 to 50 cm. Snow depth retrievals were limited to scenes with less than 80% deciduous forest cover fraction and less than 50% needle leaf forest cover.  相似文献   

2.
Retrieval of snow grain size over Greenland from MODIS   总被引:2,自引:0,他引:2  
This paper presents a new automatic algorithm to derive optical snow grain size at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The snow grains are modeled as fractal rather than spherical particles in order to account for their irregular shape. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived grain size shows a good sensitivity to snow melting and snow precipitation events. Pre-processing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust discrimination of clouds over bright snow and ice. Because in-situ grain size measurements over Greenland were not available at the time of this work, the validation was performed using data of Aoki et al. (Aoki, T., Hori, M., Motoyoshi, H., Tanikawa, T., Hachikubo, A., Sugiura, K., et al. (2007). ADEOS-II/GLI snow/ice products — Part II: Validation results using GLI and MODIS data. Remote Sensing of Environment, 111, 274-290) collected at Barrow (Alaska, USA), and Saroma, Abashiri and Nakashibetsu (Japan) in 2001-2005. The retrievals correlate well with measurements in the range of radii ~ 0.1-1 mm, although retrieved optical diameter may be about a factor of 1.5 lower than the physical measured diameter. As part of validation analysis for Greenland, the derived grain size from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM/I radiometer which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS grain size was compared with predictions of the snow model CROCUS driven by measurements of the automatic weather stations of the Greenland Climate Network. We found that the MODIS value is on average a factor of two smaller than CROCUS grain size. This result agrees with the direct validation analysis indicating that the snow reflectance model may need a “calibration” factor of ~ 1.5 for the retrieved grain size to match the physical snow grain size. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the first melting period in mid-June. Following detailed time series analysis of snow grain size for four permanent sites, the paper presents maps of this important parameter over the Greenland ice sheet for the March-September period of 2004.  相似文献   

3.
The retrieval of snow water equivalent (SWE) and snow depth is performed by inverting Special Sensor Microwave Imager (SSM/I) brightness temperatures at 19 and 37 GHz using artificial neural network ANN-based techniques. The SSM/I used data, which consist of Pathfinder Daily EASE-Grid brightness temperatures, were supplied by the National Snow and Ice Data Centre (NSIDC). They were gathered during the period of time included between the beginning of 1996 and the end of 1999 all over Finland. A ground snow data set based on observations of the Finnish Environment Institute (SYKE) and the Finnish Meteorological Institute (FMI) was used to estimate the performances of the technique. The ANN results were confronted with those obtained using the spectral polarization difference (SPD) algorithm, the HUT model-based iterative inversion and the Chang algorithm, by comparing the RMSE, the R2, and the regression coefficients. In general, it was observed that the results obtained through ANN-based technique are better than, or comparable to, those obtained through other approaches, when trained with simulated data. Performances were very good when the ANN were trained with experimental data.  相似文献   

4.
Time series of snow covered area (SCA) estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper (ETM+) were merged with a spatially explicit snowmelt model to reconstruct snow water equivalent (SWE) in the Rio Grande headwaters (3419 km2). A linear optimization scheme was used to derive SCA estimates that preserve the statistical moments of the higher spatial resolution (i.e. 30 m) ETM+ data and resolve the superior temporal signal (i.e. ∼ daily) of the MODIS data. It was found that merging the two SCA products led to an 8% decrease and an 18% increase in the basinwide SWE in 2001 and 2002, respectively, compared to the SWE estimated from ETM+ only. Relative to SWE simulations using only ETM+ data, the hybrid SCA estimates reduced the mean absolute SWE error by 17 and 84% in 2001 and 2002, respectively; errors were determined using intensive snow survey data and two separate methods of scaling snow survey field measurements of SWE to the 1-km model pixel resolution. SWE bias for both years was reduced by 49% and skewness was reduced from − 0.78 to 0.49. These results indicate that the hybrid SWE was closer to being an unbiased estimate of the measured SWE and errors were distributed more normally. The accuracy of the SCA estimates is likely dependent on the vegetation fraction.  相似文献   

5.
Snow cover represents an important water resource for the Upper Rio Grande River Basin of Colorado and New Mexico. Accuracy assessment of MODIS snow products was accomplished using Geographic Information System (GIS) techniques. Daily snow cover maps produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data were compared with operational snow cover maps produced by the National Operational Hydrologic Remote Sensing Center (NOHRSC) and against in situ Snowpack Telemetry (SNOTEL) measurements for the 2000-2001 snow season. Over the snow season, agreement between the MODIS and NOHRSC snow maps was high with an overall agreement of 86%. However, MODIS snow maps typically indicate a higher proportion of the basin as being snow-covered than do the NOHRSC snow maps. In particular, large tracts of evergreen forest on the western slopes of the San de Cristo Range, which comprise a large portion of the eastern margin of the basin, are more consistently mapped as snow-covered in the MODIS snow products than in the NOHRSC snow products. NOHRSC snow maps, however, typically indicate a greater proportion of the central portion of the basin, predominately in cultivated areas, as snow. Comparisons of both snow maps with in situ SNOTEL measurements over the snow season show good overall agreement with overall accuracies of 94% and 76% for MODIS and NOHRSC, respectively. A lengthened comparison of MODIS against SNOTEL sites, which increases the number of comparisons of snow-free conditions, indicates a slightly lower overall classification accuracy of 88%. Errors in mapping extra snow and missing snow by MODIS are comparable, with MODIS missing snow in approximately 12% of the cases and mapping too much snow in 15% of the cases. The majority of the days when MODIS fails to map snow occurs at snow depths of less than 4 cm.  相似文献   

6.
7.
Retrieval of subpixel snow covered area, grain size, and albedo from MODIS   总被引:5,自引:0,他引:5  
We describe and validate a model that retrieves fractional snow-covered area and the grain size and albedo of that snow from surface reflectance data (product MOD09GA) acquired by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The model analyzes the MODIS visible, near infrared, and shortwave infrared bands with multiple endmember spectral mixtures from a library of snow, vegetation, rock, and soil. We derive snow spectral endmembers of varying grain size from a radiative transfer model specific to a scene's illumination geometry; spectra for vegetation, rock, and soil were collected in the field and laboratory. We validate the model with fractional snow cover estimates from Landsat Thematic Mapper data, at 30 m resolution, for the Sierra Nevada, Rocky Mountains, high plains of Colorado, and Himalaya. Grain size measurements are validated with field measurements during the Cold Land Processes Experiment, and albedo retrievals are validated with in situ measurements in the San Juan Mountains of Colorado. The pixel-weighted average RMS error for snow-covered area across 31 scenes is 5%, ranging from 1% to 13%. The mean absolute error for grain size was 51 µm and the mean absolute error for albedo was 4.2%. Fractional snow cover errors are relatively insensitive to solar zenith angle. Because MODSCAG is a physically based algorithm that accounts for the spatial and temporal variation in surface reflectances of snow and other surfaces, it is capable of global snow cover mapping in its more computationally efficient, operational mode.  相似文献   

8.
We use multispectral MODIS/ASTER Airborne Simulator (MASTER) data collected at Mt. Rainier, Washington (USA) to map spatial covariance between snowpack properties and to evaluate techniques for quantitative estimation of reflectance, grain size, and temperature. The late-August MASTER images reveal a distinct pattern of snow contaminant content, grain size, and temperature related to a recent snowfall and late-summer melting. Spatial correlation between grain size and temperature patterns suggests that rapid destructive metamorphism of the fresh snow occurred when temperatures were near 0 °C. We use 10 specific locations to evaluate hemispherical-directional reflectance factor (HDRF), grain size, and temperature retrievals. We map relative snow contaminant content using visible (0.4-0.8 μm) HDRF spectra. Atmospheric correction and topographic modeling limit the accuracy of HDRF estimates. We use MASTER-derived spectra near 1.8 and 2.2 μm to estimate optical grain size (by comparison to modeled layers of ice spheres) and physical grain size (by comparison to measured spectra with known physical grain size and by correlation to ground measurements). Estimated physical grain sizes were less than estimated optical grain sizes. Differing definitions of optical and physical grain sizes could contribute to this discrepancy. Limitations at 1.8 and 2.2 μm, including reduced discrimination between larger grain radii (>∼500 μm physical, >∼200 μm optical) and low signal-to-noise ration with atmospheric effects and decreasing solar irradiance, suggest that grain size retrieval may be improved at other wavelengths (e.g., 1.1 μm). Accounting for uncertainty in emissivity, atmospheric correction, and detector noise, we estimate systematic errors in our radiant temperatures at <1.8 °C. This study shows both strengths and limitations for coregistered visible, short-wave infrared, and thermal infrared images to estimate snowpack properties and reveal their spatial coherence.  相似文献   

9.
The directional emissivity of snow and ice surfaces in the 8–14 μm thermal infrared (TIR) atmospheric window was determined from spectral radiances obtained by field measurements using a portable Fourier transform infrared spectrometer in conjunction with snow pit work. The dependence of the directional emissivity on the surface snow type (grain size and shape) was examined. We obtained emissivity spectra for five different surface types, i.e., fine dendrite snow, medium granular snow, coarse grain snow, welded sun crust snow, and smooth bare ice. The derived emissivities show a distinct spectral contrast at wavelengths λ = 10.5–12.5 μm which is enhanced with increasing the snow grain size. For example, emissivities at both 10.5 μm and 12.5 μm for the nadir angle were 0.997 and 0.984 for the fine dendrite snow, 0.996 and 0.974 for the medium granular snow, 0.995 and 0.971 for the coarse grain snow, 0.992 and 0.968 for the sun crust, and 0.993 and 0.949 for the bare ice, respectively. In addition, the spectral contrast exhibits a strong angular dependence, particularly for the coarser snow and bare ice, e.g., the emissivity at λ = 12.5 μm for the off-nadir angle of 75° reaches down to 0.927, 0.896, and 0.709 for the coarse grain snow, sun crust, and bare ice cases, respectively. The angular dependent emissivity spectra of the bare ice were quite consistent with the spectra predicted by the Fresnel reflectance theory. The observed results firmly demonstrate that the directional emissivity of snow in the TIR can vary depending upon the surface snow type. The high variability of the spectral emissivity of snow also suggests the possibility to discriminate between snow and ice types from space using the brightness temperature difference in the atmospheric window.  相似文献   

10.
This study evaluates the performance of the beta-test MODIS (MOD10A1) daily albedo product using in situ data collected in Greenland during summer 2004. Results indicate the beta-test product tracks the general seasonal variability in albedo but exhibits significant more temporal variability than observed at the stations. This may indicate problems with the cloud detection algorithm, and/or failure of the BRDF model to adequately model the bidirectional reflectance of snow. Comparisons with in situ observations at five automatic weather stations in Greenland indicate an overall RMSE of 0.067 for the Terra instrument and an RMSE of 0.075 on Aqua. The Terra-retrieved-albedo are slightly better correlated with the in situ data than the Aqua retrievals (r = 0.79 versus r = 0.77). Comparisons were also made between the MODIS daily albedo product and the MODIS 16-day albedo product (MOD43B3). Results indicate general correspondence between the two products, with better agreement found using the Terra-retrieved-albedo than the Aqua-retrieved albedo. The reason for the differences in albedo between the Aqua and Terra satellites remains unclear. At the stations examined, both the Terra and Aqua retrievals were made at nearly the same time of the day and therefore the differences in albedo between the satellites cannot be explained by differences in solar illumination. Finally, the albedo derived using MODIS data and the direct estimation algorithm (DEA) was also compared with 2004 Greenland in situ data. Results from this comparison suggest that the DEA performs well as long as the solar zenith angle of the observation is not greater than 70°.  相似文献   

11.
A strong linear relationship is found between Special Sensor Microwave/Imager (SSM/I) microwave (19 and 37 GHz) surface emissivities at horizontal and vertical polarizations over snow- and ice-free land surfaces. This allows retrieving the land surface emissivity and temperature from satellite microwave brightness temperatures after atmospheric corrections. Over the Canadian sub-arctic continental area, we show that the main factor modifying the emissivity is the fraction of water surface (FWS) within a pixel. Accordingly, a map of the fraction of water surface across the Canadian landmass is derived, given a correspondence within 6% as compared to the 1 km2 Canadian National Topographic Database of water-covered areas. The microwave-derived surface temperatures are compared to synchronous in situ air and ground surface temperatures and also with independent satellite IR measurements over areas without snow or ice. Root mean square differences range between 2° and 3.5°, with mean bias error of the order of 1-3°. Better results are always obtained with the 37 GHz channel rather than with the 19 GHz channel. Over dense vegetation, the microwave-derived surface temperature is closer to the air temperature (at surface level) than to the ground temperature. The proposed simple retrieval algorithm, not sensitive to cloud cover, appears very useful for monitoring summer interannual or seasonal trends of the fraction of surface water, as well as the daily land surface temperature variation, which are very important parameters in environmental change analysis.  相似文献   

12.
Because atmospheric aerosols scatter sunlight back to space, reflectance measurements from spaceborne radiometers can be used to estimate the aerosol load and its optical properties. Several aerosol products have been generated in a systematic way, and are available for further studies. In this paper, we evaluate the accuracy of such aerosol products derived from the measurements of POLDER, MODIS, MERIS, SEVIRI and CALIOP, through a statistical comparison with Aerosol Optical Depth (AOD) measurements from the AERONET sunphotometer network. Although this method is commonly used, this study is, to our knowledge, among the most extensive of its type since it compares the performance of the products from 5 different sensors using up to five years of data for each of them at global scale. The choice of these satellite aerosol datasets was based on their availability at the ICARE Data and Service Centre (www.icare.univ-lille1.fr).We distinguish between retrievals over land and ocean and between estimates of total and fine mode AOD. Over the oceans, POLDER and MODIS retrievals are of similar quality, with RMS difference lower than 0.1 and a correlation with AERONET of around 0.9. The POLDER estimates suffer from a small positive bias for clean atmospheres, which weakens its statistics. The other aerosol products are of lesser quality, although the SEVIRI products may be of interest for some applications that require a high temporal resolution. The MERIS product shows a very high bias. Over land, only the MODIS product offers a reliable estimate of the total AOD. On the other hand, the polarization-based retrieval using POLDER data allows a better fine mode estimate than that from MODIS. These results suggest the need for a product combining POLDER and MODIS products over land.The paper also analyses how the statistics change with the spatial and temporal thresholds that are used. Spatio-temporal averaging improves the statistics only slightly, which indicates that random errors are not dominant in the error budget. The paper includes various statistical indicators at global scale, and detailed results at individual ground stations can be obtained on request from the authors.  相似文献   

13.
An aerosol retrieval algorithm for the first Geostationary Ocean Color Imager (GOCI) to be launched in March 2010 onboard the Communication, Ocean, and Meteorological Satellite (COMS) is presented. The algorithm retrieves aerosol optical depth (AOD), fine-mode fraction (FMF), and aerosol type in 500 m × 500 m resolution. All the products are retrieved over clear water which is defined by surface reflectance ratio between 640 nm and 860 nm (SRR) less or equal to 2.5, while only AOD is retrieved over turbid water (SRR > 2.5) due to high surface reflectance. To develop optimized algorithm for the target area of GOCI, optical properties of aerosol are analyzed from extensive observation of AERONET sunphotometers to generate lookup table. Surface reflectance of turbid water is determined from 30-day composite of Rayleigh- and gas corrected reflectance. By applying the present algorithm to MODIS top-of-the atmosphere reflectance, three different aerosol cases dominated by anthropogenic aerosol contains black carbon (BC), dust, and non-absorbing aerosol are analyzed to test the algorithm. The algorithm retrieves AOD, and size information together with aerosol type which are consistent with results inferred by RGB image in a qualitative way. The comparison of the retrieved AOD with those of MODIS collection 5 and AERONET sunphotometer observations shows reliable results. Especially, the application of turbid water algorithm significantly increases the accuracy in retrieving AOD at Anmyon station. The sensitivity study between MODIS and GOCI instruments in terms of relative sensitivity and scattering angle shows promising applicability of the present algorithm to future GOCI measurements.  相似文献   

14.
We have developed a model linking phytoplankton absorption to phytoplankton size classes (PSCs) that uses a single variable, the optical absorption by phytoplankton at 443 nm, aph(443), which can be derived from the inversion of ocean colour data. The model is based on the observation that the absolute value of aph(443) co-varies with the spectral slope of phytoplankton absorption in the range of 443-510 nm, which is also a characteristic of phytoplankton size classes. The model when used for analysis of SeaWiFS global data, showed that picoplankton dominated ~ 79.1% of surface waters, nanoplankton ~ 18.5% and microplankton the remainder (2.3%). The N. and S. Atlantic and the N. and S. Pacific Oceans showed seasonal cycles with both micro and nanoplankton increasing in spring and summer in each hemisphere, while picoplankton, dominant in the oligotrophic gyres, decreased in the summer. The PSCs derived from SeaWiFS data were verified by comparing contemporary 8-day composites with PSCs derived from in situ pigment data from quasiconcurrent Atlantic Meridional Transect cruises.  相似文献   

15.
Snow-cover information is important for a wide variety of scientific studies, water supply and management applications. The NASA Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) provides improved capabilities to observe snow cover from space and has been successfully using a normalized difference snow index (NDSI), along with threshold tests, to provide global, automated binary maps of snow cover. The NDSI is a spectral band ratio that takes advantage of the spectral differences of snow in short-wave infrared and visible MODIS spectral bands to identify snow versus other features in a scene. This study has evaluated whether there is a “signal” in the NDSI that could be used to estimate the fraction of snow within a 500 m MODIS pixel and thereby enhance the use of the NDSI approach in monitoring snow cover. Using Landsat 30-m observations as “ground truth,” the percentage of snow cover was calculated for 500-m cells. Then a regression relationship between 500-m NDSI observations and fractional snow cover was developed over three different snow-covered regions and tested over other areas. The overall results indicate that the relationship between fractional snow cover and NDSI is reasonably robust when applied locally and over large areas like North America. The relationship offers advantages relative to other published fractional snow cover algorithms developed for global-scale use with MODIS. This study indicates that the fraction of snow cover within a MODIS pixel using this approach can be provided with a mean absolute error less than 0.1 over the range from 0.0 to 1.0 in fractional snow cover.  相似文献   

16.
The key variable describing global seasonal snow cover is snow water equivalent (SWE). However, reliable information on the hemispheric scale variability of SWE is lacking because traditional methods such as interpolation of ground-based measurements and stand-alone algorithms applied to space-borne observations are highly uncertain with respect to the spatial distribution of snow mass and its evolution. In this paper, an algorithm assimilating synoptic weather station data on snow depth with satellite passive microwave radiometer data is applied to produce a 30-year-long time-series of seasonal SWE for the northern hemisphere. This data set is validated using independent SWE reference data from Russia, the former Soviet Union, Finland and Canada. The validation of SWE time-series indicates overall strong retrieval performance with root mean square errors below 40 mm for cases when SWE < 150 mm. Retrieval uncertainty increases when SWE is above this threshold. The SWE estimates are also compared with results obtained by a typical stand-alone satellite passive microwave algorithm. This comparison demonstrates the benefits of the newly developed assimilation approach. Additionally, the trends and inter-annual variability of northern hemisphere snow mass during the era of satellite passive microwave measurements are shown.  相似文献   

17.
The development and assessment of satellite ocean color products require quality assured in situ data representative of the variety of bio-optical regimes encountered in the different seas. The measurement program named Bio-Optical mapping of Marine Properties (BiOMaP) fulfills this requirement by using identical instruments and applying cross-site consistent methods for the characterization of seawater inherent and apparent optical properties in the various European seas. This work introduces the BiOMaP radiometric data and describes their application to the validation of primary ocean color products. Within this framework, the radiometric data are discussed through the spectral shape and amplitude of normalized water-leaving radiances (LWN). Specifically, the spectral shape is expressed through the Principal Component Analysis of LWN(λ)/LWN(555) while the amplitude is represented by LWN(555). The resulting distribution of BiOMaP data in a three dimensional feature space demonstrates a continuity of cases across the investigated marine regions confirming a wide representativity of bio-optical regimes. The application of BiOMaP data to the validation of remote sensing reflectance from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), indicates improved performance of the SeaWiFS Data Analysis System (SeaDAS, version 6.1) atmospheric correction. In particular, the comparison of satellite and in situ matchups in the blue spectral region shows biases of a few percent with respect to the much larger reported in studies relying on earlier SeaDAS versions. Matchup analyses, restricted to the Eastern Mediterranean, Black and Baltic Seas, indicate marked regional differences likely explained by the diversity of water and aerosol types.  相似文献   

18.
For High Arctic ecosystems, snow is one of the most important climatic factors—affecting both length of the growing season, and primary plant production. To perform a retrospective analysis of inter-annual variability in snow distribution/amount and vegetative activity in a High Arctic ecosystem, these factors were investigated for the Zackenberg valley at 74.5°N, 21°.0W in Northeast Greenland. The analysis was based on recently introduced techniques that utilize Conventional- and Multispectral Digital Camera Images combined with Landsat TM/ETM+ and SPOT HRV satellite data. Since 1998 (and since 2002 multispectral) digital cameras have been installed on the Zackenberg mountain 500 m above the valley floor taking daily images of the valley automatically. The images taken by the cameras were transformed into digital orthophotos, which were then used to analyze snow cover and Normalized Difference Vegetation Index (NDVI). The snow cover and NDVI data were used to develop models to calculate end-of-winter snow accumulation, snow-cover-depletion, and net vegetative activity in 16 different melting (growing) seasons (1988-2004). At Zackenberg the end-of-winter snow accumulation shows significant inter-annual variability, whereas the end-of-winter snow cover distribution remains similar from year to year. A comparison between snow cover and NDVI distribution reveals that vegetative vigor in the Zackenberg area primarily is linked to the initiation time of the snow-free period rather than temperature. This indicates that in some Arctic regions increases in winter (snow)-precipitation might be as or even more crucial for the ecosystem, than the increased temperatures projected by the majority of General Circulation Models (GCMs).  相似文献   

19.
Using streamflow and Snowpack Telemetry (SNOTEL) measurements as constraints, the evaluation of the Moderate Resolution Imaging Spectroradiometer (MODIS) daily and 8-day snow-cover products is carried out using the Upper Rio Grande River Basin as a test site. A time series of the snow areal extent (SAE) of the Upper Rio Grande Basin is retrieved from the MODIS tile h09v05 covering the time period from February 2000 to June 2004 using an automatic Geographic Information System (GIS)-based algorithm developed for this study. Statistical analysis between the streamflow at Otowi (NM) station and the SAE retrieved from the two MODIS snow-cover products shows that there is a statistically significant correlation between the streamflow and SAE for both products. This relationship can be disturbed by heavy rainstorms in the later springtime, especially in May. Correlation analyses show that the MODIS 8-day product has a better correlation (r=−0.404) with streamflow and has less percentage of spurious snowmelt events in wintertime than the MODIS daily product (r=−0.300). Intercomparison of these two products, with the SNOTEL data sets as the ground truth, shows that (1) the MODIS 8-day product has higher classification accuracy for both snow and land; (2) the omission error of misclassifying snow as land is similar for both products, both are low; (3) the MODIS 8-day product has a slightly higher commission error of misclassifying land as snow than the MODIS daily product; and (4) the MODIS daily product has higher omission errors of misclassifying both snow and land as clouds. Clouds are the major cause for reduction of the overall accuracy of the MODIS daily product. Improvement in suppressing clouds in the 8-day product is obvious from this comparison study. The sacrifice is the temporal resolution that is reduced from 1 to 8 days. The significance of the results is that the 8-day product will be more useful in evaluating the streamflow response to the snow-cover extent changes, especially from the long-term point of view considering its lower temporal resolution than the daily product. For clear days, the MODIS daily algorithm works quite well or even better than the MODIS 8-day algorithm.  相似文献   

20.
Satellite remote sensing of ocean colour is the only method currently available for synoptically measuring wide-area properties of ocean ecosystems, such as phytoplankton chlorophyll biomass. Recently, a variety of bio-optical and ecological methods have been established that use satellite data to identify and differentiate between either phytoplankton functional types (PFTs) or phytoplankton size classes (PSCs). In this study, several of these techniques were evaluated against in situ observations to determine their ability to detect dominant phytoplankton size classes (micro-, nano- and picoplankton). The techniques are applied to a 10-year ocean-colour data series from the SeaWiFS satellite sensor and compared with in situ data (6504 samples) from a variety of locations in the global ocean. Results show that spectral-response, ecological and abundance-based approaches can all perform with similar accuracy. Detection of microplankton and picoplankton were generally better than detection of nanoplankton. Abundance-based approaches were shown to provide better spatial retrieval of PSCs. Individual model performance varied according to PSC, input satellite data sources and in situ validation data types. Uncertainty in the comparison procedure and data sources was considered. Improved availability of in situ observations would aid ongoing research in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号