首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Practical and financial constraints associated with traditional field-based lithological mapping are often responsible for the generation of maps with insufficient detail and inaccurately located contacts. In arid areas with well exposed rocks and soils, high-resolution multi- and hyperspectral imagery is a valuable mapping aid as lithological units can be readily discriminated and mapped by automatically matching image pixel spectra to a set of reference spectra. However, the use of spectral imagery in all but the most barren terrain is problematic because just small amounts of vegetation cover can obscure or mask the spectra of underlying geological substrates. The use of ancillary information may help to improve lithological discrimination, especially where geobotanical relationships are absent or where distinct lithologies exhibit inherent spectral similarity. This study assesses the efficacy of airborne multispectral imagery for detailed lithological mapping in a vegetated section of the Troodos ophiolite (Cyprus), and investigates whether the mapping performance can be enhanced through the integration of LiDAR-derived topographic data. In each case, a number of algorithms involving different combinations of input variables and classification routine were employed to maximise the mapping performance. Despite the potential problems posed by vegetation cover, geobotanical associations aided the generation of a lithological map - with a satisfactory overall accuracy of 65.5% and Kappa of 0.54 - using only spectral information. Moreover, owing to the correlation between topography and lithology in the study area, the integration of LiDAR-derived topographic variables led to significant improvements of up to 22.5% in the overall mapping accuracy compared to spectral-only approaches. The improvements were found to be considerably greater for algorithms involving classification with an artificial neural network (the Kohonen Self-Organizing Map) than the parametric Maximum Likelihood Classifier. The results of this study demonstrate the enhanced capability of data integration for detailed lithological mapping in areas where spectral discrimination is complicated by the presence of vegetation or inherent spectral similarities.  相似文献   

2.
To effectively manage forested ecosystems an accurate characterization of species distribution is required. In this study we assess the utility of hyperspectral Airborne Imaging Spectrometer for Applications (AISA) imagery and small footprint discrete return Light Detection and Ranging (LiDAR) data for mapping 11 tree species in and around the Gulf Islands National Park Reserve, in coastal South-western Canada. Using hyperspectral imagery yielded producer's and user's accuracies for most species ranging from > 52-95.4 and > 63-87.8%, respectively. For species dominated by definable growth stages, pixel-level fusion of hyperspectral imagery with LiDAR-derived height and volumetric canopy profile data increased both producer's (+ 5.1-11.6%) and user's (+ 8.4-18.8%) accuracies. McNemar's tests confirmed that improvements in overall accuracies associated with the inclusion of LiDAR-derived structural information were statistically significant (p < 0.05). This methodology establishes a specific framework for mapping key species with greater detail and accuracy then is possible using conventional approaches (i.e., aerial photograph interpretation), or either technology on its own. Furthermore, in the study area, acquisition and processing costs were lower than a conventional aerial photograph interpretation campaign, making hyperspectral/LiDAR fusion a viable replacement technology.  相似文献   

3.
Airborne scanning LiDAR is a spatial technology increasingly used for forestry and environmental applications. However, the accuracy and coverage of LiDAR observations is highly dependent on both the extrinsic specifications of the LiDAR survey as well as the intrinsic effects such as the underlying forest structure. Extrinsic parameters which are set as part of the LiDAR survey include platform altitude, scan angle (half max. angle off nadir), and beam cross sectional diameter at the reflecting surface (referred to as footprint size). In this paper we investigate the effect of a number of these extrinsic parameters, including three different platform altitudes (1000, 2000, and 3000 m), two scan angles at 1000 m (10° and 15° half max. angle off nadir), and three footprint sizes (0.2, 0.4, and 0.6 m). The comparison was undertaken in eucalypt forests at three sites, varying in vegetation structure and topography within the Wedding Bells State Forest, Coffs Harbour, Australia. Results at the plot scale (40 × 90 m areas) indicate that tree heights computed from the 1000 m LiDAR data set (10° half max. angle off nadir) are well correlated with maximum plot heights (difference < 3 m) and field measured canopy volume (r2 > 0.75, p < 0.001). Using normalised canopy height profiles (CHP) derived for sites, from data recorded at each altitude, we observed no significant difference between the relative distribution of LiDAR returns, indicating that platform altitude and footprint size have not had a major influence on CHP estimation. Interestingly, comparisons of first and last returns for individual pulses at increasing altitudes identified progressively fewer discrete first/last pulse combinations with more than 70% of pulses recorded as a single return at the highest altitude (3000 m). A possible hypothesis is that greater platform altitude and footprint size reduces the intensity of laser beam incident on a given surface area thus decreasing the probability of recording a last return above the noise threshold. Furthermore, tree scale analysis found a positive relationship between platform altitude and the underestimation of crown area and crown volume. The implications of this work for forest management are: (i) platform altitudes as high as 3000 m can be used to quantify the vertical distribution of phyto-elements, (ii) higher platform altitudes record a lower proportion of first/last return combinations that will further reduce the number of points available for forest structural assessment and development of digital elevation models, and (iii) for discrete LiDAR data, increasing platform altitude will record a lower frequency of returns per crown, resulting in larger underestimates of individual tree crown area and volume if standard algorithms are applied.  相似文献   

4.
Estimating Siberian timber volume using MODIS and ICESat/GLAS   总被引:4,自引:0,他引:4  
Geosciences Laser Altimeter System (GLAS) space LiDAR data are used to attribute a MODerate resolution Imaging Spectrometer (MODIS) 500 m land cover classification of a 10° latitude by 12° longitude study area in south-central Siberia. Timber volume estimates are generated for 16 forest classes, i.e., four forest cover types × four canopy density classes, across this 811,414 km2 area and compared with a ground-based regional volume estimate. Two regional GLAS/MODIS timber volume products, one considering only those pulses falling on slopes ≤ 10° and one utilizing all GLAS pulses regardless of slope, are generated. Using a two-phase(GLAS-ground plot) sampling design, GLAS/MODIS volumes average 163.4 ± 11.8 m3/ha across all 16 forest classes based on GLAS pulses on slopes ≤ 10° and 171.9 ± 12.4 m3/ha considering GLAS shots on all slopes. The increase in regional GLAS volume per-hectare estimates as a function of increasing slope most likely illustrate the effects of vertical waveform expansion due to the convolution of topography with the forest canopy response. A comparable, independent, ground-based estimate is 146 m3/ha [Shepashenko, D., Shvidenko, A., and Nilsson, S. (1998). Phytomass (live biomass) and carbon of Siberian forests. Biomass and Bioenergy, 14, 21-31], a difference of 11.9% and 17.7% for GLAS shots on slopes ≤ 10° and all GLAS shots regardless of slope, respectively. A ground-based estimate of total volume for the entire study area, 7.46 × 109 m3, is derived using Shepashenko et al.'s per-hectare volume estimate in conjunction with forest area derived from a 1990 forest map [Grasia, M.G. (ed.). (1990). Forest Map of USSR. Soyuzgiproleskhoz, Moscow, RU. Scale: 1:2,500,000]. The comparable GLAS/MODIS estimate is 7.38 × 109 m3, a difference of less than 1.1%. Results indicate that GLAS data can be used to attribute digital land cover maps to estimate forest resources over subcontinental areas encompassing hundreds of thousands of square kilometers.  相似文献   

5.
Automated glacier mapping from satellite multispectral image data is hampered by debris cover on glacier surfaces. Supraglacial debris exhibits the same spectral properties as lateral and terminal moraines, fluvioglacial deposits, and bedrock outside the glacier margin, and is thus not detectable by means of multispectral classification alone. Based on the observation of low slope angles for debris-covered glacier tongues, we developed a multisource method for mapping supraglacial debris. The method combines the advantages of automated multispectral classification for clean glacier ice and vegetation with slope information derived from a digital elevation model (DEM). Neighbourhood analysis and change detection is applied for further improvement of the resulting glacier/debris map. A significant percentage of the processing can be done automatically. In order to test the sensitivity of our method against different DEM qualities, it was also applied to a DEM obtained from ASTER stereo data. Additionally, we compared our multisource approach to an artificial neural network (ANN) classification of debris, using only multispectral data. While the combination with an ASTER-derived DEM revealed promising results, the ANN classification without DEM data does not.  相似文献   

6.
A multi-temporal LiDAR study of an active landslide at Montaguto (Italy) is presented. Four LiDAR-derived Digital Terrain Models acquired on May 2006, July 2009, April 2010 and June 2010 are used. The interpretation of selected morphometric parameters (surface roughness, residual topographic surface) and the statistical analysis of the temporal variations of such parameters allowed the reconstruction and tracking of the landslide. The landslide boundary monitoring was achieved and zones of uplift and subsidence, volumes of removed and/or accumulated material, and average rates of vertical and horizontal displacement (retreat rate of the crown and advancement rate of the toe) were estimated. Deformation structures (scarps, cracks, folds) affecting the landslide in different times were also mapped; some of such structures represent precursors of impending instability processes or give information on the mechanism of emplacement. Various types of activity (e.g. rock-fall, flow) and geometry (e.g., channelized flow) are recognized and zones whose topographic features change with time due to artificial drainage and earth handling/removal work were detected. The LiDAR-derived information allows us to decipher the kinematics of the landslide. The results provide new insight on the use of airborne LiDAR in the monitoring strategies of gravity-controlled processes.  相似文献   

7.
融合影像的LiDAR点云数据分类方法   总被引:1,自引:0,他引:1  
提出一种融合影像的LiDAR点云分类算法。该算法首先采用渐进三角网加密方法对地面点和非地面点进行分类;接着采用本文所提出的坡度信息量的方法对非地面点进行分类为建筑物点和植被点;最后对于分类可信度不高的建筑物和植被粘连的区域,通过融合影像进一步区域分割。实验结果表明,该方法自动程度高,并且分类准确度高;在实验所用的区域,准确率达到83%。  相似文献   

8.
快速准确获取森林结构参数对森林资源调查管理及全球碳汇研究具有重要意义。以祁连山东、中部青海云杉林为研究对象,利用16个无人机激光雷达(LiDAR)点云数据、正射影像数据结合实地样方观测数据,提取样方内青海云杉的单木树高并准确验证树木分割精度;结合实测数据和地形数据,依据统计指标验证提取树高精度并分析原因;基于点云数据提取的各样方树高分析祁连山青海云杉冠层高度在空间上的变化。结果表明:在祁连山山地森林,冠层高度平均值估算精度最高,R2为0.93,RMSE为1.39 m(P<0.05);地形影响基于点云数据的树高提取,坡度较小的青海云杉树高提取效果更好;从东到西,青海云杉平均树高呈下降趋势;随着海拔高度上升,青海云杉的平均树高先上升后下降,这与祁连山东西水热条件差异和不同海拔树木年龄分布有关。  相似文献   

9.
Due to increased fuel loading as a result of fire suppression, land managers in the American west are in need of precise information about the fuels they manage, including canopy fuels. Canopy fuel metrics such as canopy height (CH), canopy base height (CBH), canopy bulk density (CBD) and available canopy fuel (ACF) are specific inputs for wildfire behavior models such as FARSITE and emission models such as FOFEM. With finer spatial resolution data, accurate quantification of these metrics with detailed spatial heterogeneity can be accomplished. Light Detection and Ranging (LiDAR) and color near-infrared imagery are active and passive systems, respectively, that have been utilized for measuring a range of forest structure characteristics at high resolution. The objective of this research was to determine which remote sensing dataset can estimate canopy fuels more accurately and whether a fusion of these datasets produces more accurate estimates. Regression models were developed for ponderosa pine (Pinus ponderosa) stand representative of eastern Washington State using field data collected in the Ahtanum State Forest and metrics derived from LiDAR and imagery. Strong relationships were found with LiDAR alone and LiDAR was found to increase canopy fuel accuracy compared to imagery. Fusing LiDAR with imagery and/or LiDAR intensity led to small increases in estimation accuracy over LiDAR alone. By improving the ability to estimate canopy fuels at higher spatial resolutions, spatially explicit fuel layers can be created and used in wildfire behavior and smoke emission models leading to more accurate estimations of crown fire risk and smoke related emissions.  相似文献   

10.
The structure of a forest canopy often reflects its disturbance history. Such signatures of past disturbances or legacies can influence how the ecosystem functions across broad spatio-temporal scales. The 1938 hurricane and ensuing salvage operations which swept through New England represent the most recent large, infrequent disturbance (LID) in this region. Though devastating (downing ∼ 70% of the timber at Harvard Forest), the disturbance was not indiscriminate; it left behind a heterogeneous landscape comprised of different levels of canopy damage. We analyzed large-footprint LiDAR, from the Prospect Hill tract at Harvard Forest in central Massachusetts, to assess whether damage to the forest structure from the hurricane and subsequent timber extraction could be discerned after ∼ 65 years. Differences in LiDAR-derived measures of canopy height and vertical diversity were a function of the degree of damage from the 1938 hurricane and the predominant tree species which is, in part, a function of land use history. Higher levels of damage corresponded to slightly shorter canopies with a less even vertical distribution of return from the ground to the top. In addition, differences in canopy topography as revealed by spatial autocorrelation of canopy top heights were found among the damage classes. Less disturbed stands were characterized by lower levels of local autocorrelation for canopy height and higher levels of vertical diversity of LiDAR returns. These differences in canopy structure reveal that the forest tract has not completely recovered from the 1938 LID and salvage regime, which may have implications on arboreal and understory habitat and other ecosystem functions.  相似文献   

11.
Traditional field-based lithological mapping can be a time-consuming, costly and challenging endeavour when large areas need to be investigated, where terrain is remote and difficult to access and where the geology is highly variable over short distances. Consequently, rock units are often mapped at coarse-scales, resulting in lithological maps that have generalised contacts which in many cases are inaccurately located. Remote sensing data, such as aerial photographs and satellite imagery are commonly incorporated into geological mapping programmes to obtain geological information that is best revealed by overhead perspectives. However, spatial and spectral limitations of the imagery and dense vegetation cover can limit the utility of traditional remote sensing products. The advent of Airborne Light Detection And Ranging (LiDAR) as a remote sensing tool offers the potential to provide a novel solution to these problems because accurate and high-resolution topographic data can be acquired in either forested or non-forested terrain, allowing discrimination of individual rock types that typically have distinct topographic characteristics. This study assesses the efficacy of airborne LiDAR as a tool for detailed lithological mapping in the upper section of the Troodos ophiolite, Cyprus. Morphometric variables (including slope, curvature and surface roughness) were derived from a 4 m digital terrain model in order to quantify the topographic characteristics of four principal lithologies found in the area. An artificial neural network (the Kohonen Self-Organizing Map) was then employed to classify the lithological units based upon these variables. The algorithm presented here was used to generate a detailed lithological map which defines lithological contacts much more accurately than the best existing geological map. In addition, a separate map of classification uncertainty highlights potential follow-up targets for ground-based verification. The results of this study demonstrate the significant potential of airborne LiDAR for lithological discrimination and rapid generation of detailed lithological maps, as a contribution to conventional geological mapping programmes.  相似文献   

12.
目的使用单幅RGB图像引导稀疏激光雷达(light detection and ranging,LiDAR)点云构建稠密深度图已逐渐成为研究热点,然而现有方法在构建场景深度信息时,目标边缘处的深度依然存在模糊的问题,影响3维重建与摄影测量的准确性。为此,本文提出一种基于多阶段指导网络的稠密深度图构建方法。方法多阶段指导网络由指导信息引导路径和RGB信息引导路径构成。在指导信息引导路径上,通过ERF(efficient residual factorized)网络融合稀疏激光雷达点云和RGB数据提取前期指导信息,采用指导信息处理模块融合稀疏深度和前期指导信息,并将融合后的信息通过双线性插值的方式构建出表面法线,将多模态信息融合指导模块提取的中期指导信息和表面法线信息输入到ERF网络中,提取可用于引导稀疏深度稠密化的后期指导信息,以此构建该路径上的稠密深度图;在RGB信息引导路径上,通过前期指导信息引导融合稀疏深度与RGB信息,通过多模态信息融合指导模块获得该路径上的稠密深度图,采用精细化模块减少该稠密深度图中的误差信息。融合上述两条路径得到的结果,获得最终稠密深度图。结果通过KITTI(...  相似文献   

13.
地面LiDAR数据中建筑轮廓和角点提取   总被引:3,自引:0,他引:3       下载免费PDF全文
建筑轮廓和角点作为多平台激光雷达数据常用的配准基元,其提取方法正受到越来越多的关注.投影密度法是一种常用的从地面LiDAR数据中提取建筑轮廓和角点的方法,然而以往研究对于直接影响建筑轮廓提取结果的格网密度阈值考虑较少.提出一种轮廓密度估计的方法,能够根据点云实际情况自动准确地计算出格网密度阈值,从而提取较为准确的建筑轮廓格网.在此基础上,利用轮廓线段高程分割和密度延伸的方法对轮廓进行分割和恢复,能够提取完整的建筑轮廓.最后,利用轮廓线段的相交关系获得建筑角点.实验结果表明,本文方法能够有效从地面LiDAR数据中提取建筑轮廓和角点,正确性、完整性和定位精度较高.  相似文献   

14.
This paper describes applications of non-parametric and parametric methods for estimating forest growing stock volume using Landsat images on the basis of data measured in the field, integrated with ancillary information. Several k-Nearest Neighbors (k-NN) algorithm configurations were tested in two study areas in Italy belonging to Mediterranean and Alpine ecosystems. Field data were acquired by the regional forest inventory and forest management plans, and satellite images are from Landsat 5 TM and Landsat 7 ETM+. The paper describes the data used, the methodologies adopted and the results achieved in terms of pixel level accuracy of forest growing stock volume estimates. The results show that several factors affect estimation accuracy when using the k-NN method. For the two test areas a total of 3500 different configurations of the k-NN algorithm were systematically tested by changing the number and type of spectral and ancillary input variables, type of multidimensional distance measures, number of nearest neighbors and methods for spectral feature extraction using the leave-one-out (LOO) procedure. The best k-NN configurations were then used for pixel level estimation; the accuracy was estimated with a bootstrapping procedure; and the results were compared to estimates obtained using parametric regression methods implemented on the same data set.

The best k-NN growing stock volume pixel level estimates in the Alpine area have a Root Mean Square Error (RMSE) ranging between 74 and 96 m3 ha− 1 (respectively, 22% and 28% of the mean measured value) and between 106 and 135 m3 ha− 1 (respectively, 44% and 63% of the mean measured value) in the Mediterranean area. On the whole, the results cast a promising light on the use of non-parametric techniques for forest attribute estimation and mapping with accuracy high enough to support forest planning activities in such complex landscapes. The results of the LOO analyses also highlight the importance of a local empirical optimization phase of the k-NN procedure before defining the best algorithm configuration. In the tests performed the pixel level accuracy increased, depending on the k-NN configuration, as much as 100%.  相似文献   


15.
Estimates of forest area are among the most common and useful information provided by national forest inventories. The estimates are used for local and national purposes and for reporting to international agreements such as the Montréal Process, the Ministerial Conference on the Protection of Forests in Europe, and the Kyoto Protocol. The estimates are usually based on sample plot data and are calculated using probability-based estimators. These estimators are familiar, generally unbiased, and entail only limited computational complexity, but they do not produce the maps that users are increasingly requesting, and they generally do not produce sufficiently precise estimates for small areas. Model-based estimators overcome these disadvantages, but they may be biased and estimation of variances may be computationally intensive. The study objective was to compare probability- and model-based estimators of mean proportion forest using maps based on a logistic regression model, forest inventory data, and Landsat imagery. For model-based estimators, methods for evaluating bias and reducing the computational intensity were also investigated. Four conclusions were drawn: the logistic regression model exhibited no serious lack of fit to the data; all the estimators produced comparable estimates for mean proportion forest, except for small areas; probability-based inferences enhanced using maps produced increased precision; and the computational intensity associated with estimating variances for model-based estimators can be greatly reduced with no detrimental effects.  相似文献   

16.
Reedbeds are important habitats for supporting biodiversity and delivering a range of ecosystem services, yet reedbeds in the UK are under threat from intensified agriculture, changing land use and pollution. To develop appropriate conservation strategies, information on the distribution of reedbeds is required. Field surveys of these wetland environments are difficult, time consuming and expensive to execute for large areas. Remote sensing has the potential to replace or complement such field surveys, yet the specific application to reedbed habitats has not been fully investigated. In the present study, airborne hyperspectral and LiDAR imagery were acquired for two sites in Cumbria, UK. The research aimed to determine the most effective means of analysing hyperspectral data covering the visible, near infrared (NIR) and shortwave infrared (SWIR) regions for mapping reedbeds and to investigate the effects of incorporating image textural information and LiDAR-derived measures of canopy structure on the accuracy of reedbed delineation. Due to the high dimensionality of the hyperspectral data, three image compression algorithms were evaluated: principal component analysis (PCA), spectrally segmented PCA (SSPCA) and minimum noise fraction (MNF). The LiDAR-derived measures tested were the canopy height model (CHM), digital surface model (DSM) and the DSM-derived slope map. The SSPCA-compressed data produced the highest reedbed accuracy and processing efficiency. The optimal SSPCA dataset incorporated 12 PCs comprised of the first 3 PCs derived from each of the spectral segments: visible (392-700 nm), NIR (701-972 nm), SWIR-1 (973-1366 nm) and SWIR-2 (1530-2240 nm). Incorporating image textural measures produced a significant improvement in the classification accuracy when using MNF-compressed data, but had no impact when using the SSPCA-compressed imagery. A significant improvement (+ 11%) in the accuracy of reedbed delineation was achieved when a mask generated by applying a 3 m threshold to the LiDAR-derived CHM was used to filter the reedbed map derived from the optimal SSPCA dataset. This paper demonstrates the value in combining appropriately compressed hyperspectral imagery with LiDAR data for the effective mapping of reedbed habitats.  相似文献   

17.
In even-aged, single species conifer plantations LiDAR height data can be modelled to provide accurate estimates of tree height and volume. However, it is apparent that growth models developed for single species stands are not directly transferable to a more general situation of mixed species plantations. This paper evaluates the ability of small footprint, dual-return, pulsed airborne LiDAR data to estimate the proportion of the productive species when mixed with a nurse crop in closed canopy plantations. A study area located in Galloway Forest District in Scotland is used as an example of Lodgepole pine and Sitka spruce mixed plantation; this area contains good examples of a wide range of pure and mixed species plantation types. Three species groups are studied: areas of pure Sitka spruce, areas of pure Lodgepole pine and areas where the two species have been planted together. Two approaches are assessed for detection of plantation mixtures: the first uses LiDAR intensity data to separate spruce and pine species and the second uses LiDAR-derived canopy density measures, coefficient of variation, skewness, percent of ground returns (which provides a measure of canopy openness) and the mean canopy height, which enables areas with height variations to be identified. From analysis of LiDAR data extracted from 54 study plots using logistic regression, the coefficient of variation and LiDAR intensity data provide the most useful predictors of the proportion of spruce in a pine/spruce mixture with coefficients of determination (R2) of 0.914 and 0.930 respectively. The method could be developed as a mapping tool, which in combination with existing inventory data should help to improve timber volume forecasting for mixed species even-aged plantations.  相似文献   

18.
Cultural heritage is increasingly put through imaging systems such as multispectral cameras and 3D scanners. Though these acquisition systems are often used independently, they collect complementary information (spectral vs. spatial) used for the study, archiving and visualization of cultural heritage. Recording 3D and multispectral data in a single coordinate system enhances the potential insights in data analysis.  相似文献   

19.
This study compared the suitability of LIDAR (LIght Detection And Ranging) data, three-band multispectral data, and LIDAR data integrated with multispectral information, for classifying spatially complex vegetation in the Aspen Parkland of western Canada. Classifications were performed for both a) general vegetation classes limited to three major formations of deciduous forest, shrubland and grassland, and b) eight detailed vegetation classes including upland mixed prairie and fescue grasslands, closed and semi-open aspen forests, western snowberry and silverberry shrublands, and fresh and saline riparian (lowland) meadows. A Digital Elevation Model (DEM) and Surface Elevation Model (SEM) developed from LIDAR data incorporated both topographic and biological biases in community positioning across the landscape. Using multispectral data, the original digital image mosaic, its hybrid color composite, and an intensity-hue-saturation (IHS) image were each tested. Final vegetation classification was done through integration of information from both digital images and LIDAR data to evaluate the improvement in classification accuracy. Among the land cover schedules with three and eight classes of vegetation, classification from the multispectral imagery, specifically the hybrid color composite image, had the highest accuracy, peaking at 74.6% and 59.4%, respectively. In contrast, the LIDAR classification schedules led to an average classification accuracy of 64.8% and 52.3%, respectively, for the general and detailed vegetation data. Subsequent integration of the LIDAR and digital image classification schedules resulted in accuracy improvements of 16 to 20%, resulting in a superior final accuracy of 91% and 80.3%, respectively, for the three and eight classes of vegetation. A final land cover map including 8 classes of vegetation, fresh and saline water, as well as bare ground, was created for the study area with an overall accuracy of 83.9%, highlighting the benefit of integrating LIDAR and multispectral imagery for enhanced vegetation classification in heterogenous rangeland environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号