首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Continuing, severe outbreaks of mountain pine beetle (Dendroctonus ponderosae) across western North America have resulted in widespread mortality of lodgepole pine (Pinus contorta). Multiple studies have used high spatial resolution satellite data to map areas of beetle kill; these studies have largely focused on mapping red canopy cover associated with recent tree mortality and have not examined mapping gray canopy cover that occurs after red needles have dropped. The work presented here examines the use of newly available GeoEye-1 data for mapping both red and gray canopy area in southeastern Wyoming lodgepole pine forest. A 0.5 m spatial resolution, pan-sharpened GeoEye-1 image was used to classify areas of green, red, and gray canopy cover. Reference data were collected at twelve 500 m2 field plots. Shadow-normalized green, red, and gray canopy area from classified GeoEye-1 data closely agreed with field-estimated green, red, and gray canopy area. Mean absolute error in canopy cover for the twelve sample plots was 8.3% for the green class, 5.4% for the red class, and 7.2% for the gray class. When all twelve plots were aggregated, remotely sensed estimates of green, red, and gray cover were within 1.7% of the field-estimated cover. Our results demonstrate that high spatial resolution spaceborne multispectral data are a promising tool for mapping canopy mortality caused by mountain pine beetle outbreaks.  相似文献   

2.
Mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive insect infesting mature pine forests in North America and has devastated millions of hectares of forest in western Canada. Past studies have demonstrated the use of multispectral imagery for remote identification and mapping of visible or red attack damage in forests. This study aims to detect pre-visual or green attack damage in lodgepole pine needles by means of hyperspectral measurements, particularly via continuous wavelet analysis. Field measurements of lodgepole pine stands were conducted at two sites located northwest of Edmonton, Alberta, Canada. In June and August of 2007, reflectance spectra (350-2500 nm) were collected for 16 pairs of trees. Each of the 16 tree pairs included one control tree (healthy), and one stressed tree (girdled to simulate the effects of beetle infestation). In addition, during the period of June through October 2008, spectra were collected from 15 pairs of control- and beetle-infested trees. Spectra derived from these 31 tree pairs were subjected to a continuous wavelet transform, generating a scalogram that compiles the wavelet power as a function of wavelength location and scale of decomposition. Linear relationships were then explored between the wavelet scalograms and chemical properties or class labels (control and non-control) of the sample populations in order to isolate the most useful distinguishing spectral features that related to infested or girdled trees vs. control trees.A deficit in water content is observed in infested trees while an additional deficit in chlorophyll content is seen for girdled trees. The measurable water deficit of infested and girdled tree samples was detectable from the wavelet analysis of the reflectance spectra providing a novel method for the detection of green attack. The spectral features distinguishing control and infested trees are predominantly located between 950 and 1390 nm from scales 1 to 8. Of those, five features between 1318 to 1322 nm at scale 7 are consistently found in the July and August 2008 datasets. These features are located at longer wavelengths than those investigated in previous studies (below 1100 nm) and provide new insights into the potential remote detection of green attack. Spectral features that distinguish control and girdled trees were mostly observed between 1550 and 2370 nm from scales 1 to 5. The differing response of girdled and infested trees appears to indicate that the girdling process does not provide a perfect simulation of the effects caused by beetle infestation.It remains to be determined if the location of the 1318-1322 nm features, near the edge of a strong atmospheric water absorption band, will be sufficiently separable for use in airborne detection of green attack. A plot comparing needle water content and wavelet power at 1320 nm reveals considerable overlap between data derived from both infested and control samples, though the groups are statistically separable. This obstacle may preclude a high accuracy separation of healthy and infected single individuals, but establishing threshold identification levels may provide an economical, efficient and expeditious method for discriminating between healthy and infested tree populations.  相似文献   

3.
Insects are important forest disturbance agents, and mapping their effects on tree mortality and surface fuels represents a critical research challenge. Although various remote sensing approaches have been developed to monitor insect impacts, most studies have focused on single insect agents or single locations and have not related observed changes to ground-based measurements. This study presents a remote sensing framework to (1) characterize spectral trajectories associated with insect activity of varying duration and severity and (2) relate those trajectories to ground-based measurements of tree mortality and surface fuels in the Cascade Range, Oregon, USA. We leverage a Landsat time series change detection algorithm (LandTrendr), annual forest health aerial detection surveys (ADS), and field measurements to investigate two study landscapes broadly applicable to conifer forests and dominant insect agents of western North America. We distributed 38 plots across multiple forest types (ranging from mesic mixed-conifer to xeric lodgepole pine) and insect agents (defoliator [western spruce budworm] and bark beetle [mountain pine beetle]). Insect effects were evident in the Landsat time series as combinations of both short- and long-duration changes in the Normalized Burn Ratio spectral index. Western spruce budworm trajectories appeared to show a consistent temporal evolution of long-duration spectral decline (loss of vegetation) followed by recovery, whereas mountain pine beetle plots exhibited both short- and long-duration spectral declines and variable recovery rates. Although temporally variable, insect-affected stands generally conformed to four spectral trajectories: short-duration decline then recovery, short- then long-duration decline, long-duration decline, long-duration decline then recovery. When comparing remote sensing data with field measurements of insect impacts, we found that spectral changes were related to cover-based estimates (tree basal area mortality [R2adj = 0.40, F1,34 = 24.76, P < 0.0001] and down coarse woody detritus [R2adj = 0.29, F1,32 = 14.72, P = 0.0006]). In contrast, ADS changes were related to count-based estimates (e.g., ADS mortality from mountain pine beetle positively correlated with ground-based counts [R2adj = 0.37, F1,22 = 14.71, P = 0.0009]). Fine woody detritus and forest floor depth were not well correlated with Landsat- or aerial survey-based change metrics. By characterizing several distinct temporal manifestations of insect activity in conifer forests, this study demonstrates the utility of insect mapping methods that capture a wide range of spectral trajectories. This study also confirms the key role that satellite imagery can play in understanding the interactions among insects, fuels, and wildfire.  相似文献   

4.
High spatial resolution remotely sensed data has the potential to complement existing forest health programs for both strategic planning over large areas, as well as for detailed and precise identification of tree crowns subject to stress and infestation. The area impacted by the current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in British Columbia, Canada, has increased 40-fold over the previous 5 years, with approximately 8.5 million ha of forest infested in 2005. As a result of the spatial extent and intensity of the outbreak, new technologies are being assessed to help detect, map, and monitor the damage caused by the beetle, and to inform mitigation of future beetle outbreaks. In this paper, we evaluate the capacity of high spatial resolution QuickBird multi-spectral imagery to detect mountain pine beetle red attack damage. ANOVA testing of individual spectral bands, as well as the Normalized Difference Vegetation Index (NDVI) and a ratio of red to green reflectance (Red-Green Index or RGI), indicated that the RGI was the most successful (p < 0.001) at separating non-attack crowns from red attack crowns. Based on this result, the RGI was subsequently used to develop a binary classification of red attack and non-attack pixels. The total number of QuickBird pixels classified as having red attack damage within a 50 m buffer of a known forest health survey point were compared to the number of red attack trees recorded at the time of the forest health survey. The relationship between the number of red attack pixels and observed red attack crowns was assessed using independent validation data and was found to be significant (r2 = 0.48, p < 0.001, standard error = 2.8 crowns). A comparison of the number of QuickBird pixels classified as red attack, and a broader scale index of mountain pine beetle red attack damage (Enhanced Wetness Difference Index, calculated from a time series of Landsat imagery), was significant (r2 = 0.61, p < 0.001, standard error = 1.3 crowns). These results suggest that high spatial resolution imagery, in particular QuickBird satellite imagery, has a valuable role to play in identifying tree crowns with red attack damage. This information could subsequently be used to augment existing detailed forest health surveys, calibrate synoptic estimates of red attack damage generated from overview surveys and/or coarse scale remotely sensed data, and facilitate the generation of value-added information products, such as estimates of timber volume impacts at the forest stand level.  相似文献   

5.
In New Caledonia (21°S, 165°E), shade-grown coffee plantations were abandoned for economic reasons in the middle of the 20th century. Coffee species (Coffea arabica, C. canephora and C. liberica) were introduced from Africa in the late 19th century, they survived in the wild and spontaneously cross-hybridized. Coffee species were originally planted in native forest in association with leguminous trees (mostly introduced species) to improve their growth. Thus the canopy cover over rustic shade coffee plantations is heterogeneous with a majority of large crowns, attributed to leguminous trees. The aim of this study was to identify suitable areas for coffee inter-specific hybridization in New Caledonia using field based environmental parameters and remotely sensed predictors. Due to the complex structure of tropical vegetation, remote sensing imagery needs to be spatially accurate and to have the appropriate bands for monitoring vegetation cover. Quickbird panchromatic (black and white) imagery at 0.6 to 0.7 m spatial resolutions and multispectral imagery at 2.4 m spatial resolution were pansharpened and used for this study. The two most suitable remotely sensed indicators, canopy heterogeneity and tree crown size, were acquired by the sequential use of tree crown detection (neural network), image processing (such as textural analysis) and classification. All models were supervised and trained on learning data determined by human expertise. The final model has two remotely sensed indicators and three physical parameters based on the Digital Elevation Model: elevation, slope and water flow accumulation. Using these five predictive variables as inputs, two modelling methods, a decision tree and a neural network, were implemented. The decision tree, which showed 96.9% accuracy on the test set, revealed the involvement of ecological parameters in the hybridization of Coffea species. We showed that hybrid zones could be characterized by combinations of modalities, underlining the complexity of the environment concerned. For instance, forest heterogeneity and large crown size, steep slopes (> 53.5%) and elevation between 194 and 429 m asl, are favourable factors for Coffea inter-specific hybridization. The application of the neural network on the whole area gave a predictive map that distinguished the most suitable areas by means of a nonlinear continuous indicator. The map provides a confidence level for each area. The most favourable areas were geographically localized, providing a clue for the detection and conservation of favourable areas for Coffea species neo-diversity.  相似文献   

6.
At this point, models, and accompanying field data, that could be used to predict the likely response of estuaries and tidal marshes to future environmental change are lacking. To improve this situation, monitoring efforts in these complex ecosystems need to be intensified, and new, efficient monitoring techniques should be developed. In this context, our research assessed the use of IKONOS satellite imagery to map plant communities at Tivoli Bays, in the Hudson River National Estuarine Research Reserve (HRNERR). Tivoli Bays, a freshwater tidal wetland, contains a unique assemblage of plant communities, including three invasive plants (Trapa natans, Phragmites australis, and Lythrum salicaria). To study the effects of textural information on the accuracy of land cover maps produced for the HRNERR, seven different 11-class land cover maps were produced using a maximum-likelihood classification on seven combinations of spectral and textural data derived from an IKONOS image. Conventional contingency tables served as a basis for an accuracy assessment of these maps. The overall classification accuracies, as assessed by the contingency tables, ranged from 45% to 77.7%. The maximum-likelihood classification relying on four spectral and four 5-by-5 filter textural bands (created by superposing a textural filter separately on each band of the IKONOS image) had the lowest overall accuracy, whereas the one based on four spectral and four 3-by-3 filter textural bands associated with all segments, identified by an object-based classification of the IKONOS image, had the highest accuracy. Results suggest that a combination of per-pixel classification and incorporation of texture for segments generated through an object-based classification slightly increases classification accuracy from 76.2% for the maximum-likelihood classification of the four spectral bands of the IKONOS image to 77.7% for the combination of spectral and textural information produced for selected segments. Further analysis indicates that better results may be obtained by using other types of data within the segments and that the traditional approach to the selection of training and accuracy sites may negatively bias the results for a combination per-pixel and object-based classification.  相似文献   

7.
We investigated the potential of using unclassified spectral data for predicting the distribution of three bird species over a ∼400,000 ha region of Michigan's Upper Peninsula using Landsat ETM+ imagery and 433 locations sampled for birds through point count surveys. These species, Black-throated Green Warbler, Nashville Warbler, and Ovenbird, were known to be associated with forest understory features during breeding. We examined the influences of varying two spatially explicit classification parameters on prediction accuracy: 1) the window size used to average spectral values in signature creation and 2) the threshold distance required for bird detections to be counted as present. Two accuracy measurements, proportion correctly classified (PCC) and Kappa, of maps predicting species' occurrences were calculated with ground data not used during classification. Maps were validated for all three species with Kappa values > 0.3 and PCC > 0.6. However, PCC provided little information other than a summary of sample plot frequencies used to classify species' presence and absence. Comparisons with rule-based maps created using the approach of Gap Analysis showed that spectral information predicted the occurrence of these species that use forest subcanopy components better than could be done using known land cover associations (Kappa values 0.1 to 0.3 higher than Gap Analysis maps). Accuracy statistics for each species were affected in different ways by the detection distance of point count surveys used to stratify plots into presence and absence classes. Moderate-to-large detection distances (100 m and 180 m) best classified maps of Black-throated Green Warbler and Nashville Warbler occurrences, while moderate detection distances (50 m and 100 m), which ignored remote observations, provided the best source of information for classification of Ovenbird occurrence. Window sizes used in signature creation also influenced accuracy statistics but to a lesser extent. Highest Kappa values of majority maps were typically obtained using moderate window sizes of 9 to 13 pixels (0.8 to 1.2 ha), which are representative of the study species territory sizes. The accuracy of wildlife occurrence maps classified from spectral data will therefore differ given the species of interest, the spatial precision of occurrence records used as ground references and the number of pixels included in spectral signatures. For these reasons, a quantitative examination is warranted to determine how subjective decisions made during image classifications affect prediction accuracies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号