首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of multi-temporal ERS-1/2 tandem coherence in boreal forests and retrieval accuracy of forest stem volume have been investigated mostly for small, managed forest areas. The clear seasonal trends and the high accuracy of the retrieval are therefore valid for specific types of forest and question is if these findings extend to large areas with different forest types in a similar manner. Using multi-temporal ERS-1/2 coherence data and extensive sets of inventory data at stand level at seven forest compartments in Central Siberia we confirm that the trend of coherence as a function of stem volume is mainly driven by the environmental conditions at acquisition. In addition, we have now found that the variability of the coherence for a given stem volume are due to spatial variations of the environmental conditions, strong topography (slope > 10°), small stand size (< 3-4 ha) and low relative stocking (< 50%). Further deviations can be related to errors in the ground data. Stem volume retrieval behaves consistently under stable winter frozen conditions. For stands larger than 3-4 ha and relative stocking of at least 50%, a relative RMSE of 20-25% can be considered the effective retrieval error achievable in Siberian boreal forest. Combined with previous experience from managed test forests in Sweden and Finland, C-band ERS-1/2 tandem coherence observations acquired under stable winter conditions with a snow cover and an at least moderate breeze can be considered so far the most suitable spaceborne remote sensing observable for the estimation of forest stem volume in homogeneous forest stands throughout the boreal zone.  相似文献   

2.
Siberia's boreal forests represent an economically and ecologically precious resource, a significant part of which is not monitored on a regular basis. Synthetic aperture radars (SARs), with their sensitivity to forest biomass, offer mapping capabilities that could provide valuable up-to-date information, for example about fire damage or logging activity. The European Commission SIBERIA project had the aim of mapping an area of approximately 1 million km2 in Siberia using SAR data from two satellite sources: the tandem mission of the European Remote Sensing Satellites ERS-1/2 and the Japanese Earth Resource Satellite JERS-1. Mosaics of ERS tandem interferometric coherence and JERS backscattering coefficient show the wealth of information contained in these data but they also show large differences in radar response between neighbouring images. To create one homogeneous forest map, adaptive methods which are able to account for brightness changes due to environmental effects were required. In this paper an adaptive empirical model to determine growing stock volume classes using the ERS tandem coherence and the JERS backscatter data is described. For growing stock volume classes up to 80 m3/ha, accuracies of over 80% are achieved for over a hundred ERS frames at a spatial resolution of 50 m.  相似文献   

3.
Estimating Siberian timber volume using MODIS and ICESat/GLAS   总被引:4,自引:0,他引:4  
Geosciences Laser Altimeter System (GLAS) space LiDAR data are used to attribute a MODerate resolution Imaging Spectrometer (MODIS) 500 m land cover classification of a 10° latitude by 12° longitude study area in south-central Siberia. Timber volume estimates are generated for 16 forest classes, i.e., four forest cover types × four canopy density classes, across this 811,414 km2 area and compared with a ground-based regional volume estimate. Two regional GLAS/MODIS timber volume products, one considering only those pulses falling on slopes ≤ 10° and one utilizing all GLAS pulses regardless of slope, are generated. Using a two-phase(GLAS-ground plot) sampling design, GLAS/MODIS volumes average 163.4 ± 11.8 m3/ha across all 16 forest classes based on GLAS pulses on slopes ≤ 10° and 171.9 ± 12.4 m3/ha considering GLAS shots on all slopes. The increase in regional GLAS volume per-hectare estimates as a function of increasing slope most likely illustrate the effects of vertical waveform expansion due to the convolution of topography with the forest canopy response. A comparable, independent, ground-based estimate is 146 m3/ha [Shepashenko, D., Shvidenko, A., and Nilsson, S. (1998). Phytomass (live biomass) and carbon of Siberian forests. Biomass and Bioenergy, 14, 21-31], a difference of 11.9% and 17.7% for GLAS shots on slopes ≤ 10° and all GLAS shots regardless of slope, respectively. A ground-based estimate of total volume for the entire study area, 7.46 × 109 m3, is derived using Shepashenko et al.'s per-hectare volume estimate in conjunction with forest area derived from a 1990 forest map [Grasia, M.G. (ed.). (1990). Forest Map of USSR. Soyuzgiproleskhoz, Moscow, RU. Scale: 1:2,500,000]. The comparable GLAS/MODIS estimate is 7.38 × 109 m3, a difference of less than 1.1%. Results indicate that GLAS data can be used to attribute digital land cover maps to estimate forest resources over subcontinental areas encompassing hundreds of thousands of square kilometers.  相似文献   

4.
The feasibility of interferometric SAR (INSAR) coherence observations for stem volume (biomass) retrieval is investigated by applying coherence data determined from 14 ERS-1 and ERS-2 C-band SAR image pairs. The image set covers a single forested test area in Finland, and both summer (snow-free) and winter conditions are represented. The data set enabled (a) the study of stem volume retrieval performance under varying conditions, (b) the analysis of the seasonal behavior of interferometric coherence, and (c) the determination of the accuracy characteristics of empirical (nonlinear) coherence modeling. Additionally, a new technique to estimate forest stem volume from INSAR data was developed based on constrained iterative inversion of the applied empirical model. The results indicate that the usability of winter images with snow-covered terrain is superior to that of images obtained under summer conditions. The applied empirical model appears to be adequate for describing the stand-wise coherence of boreal forest. Hence, a practical stem volume estimation method can be established based on it. The highest correlation coefficient between the estimated stem volume and the ground truth stem volume showed values as high as r=0.9 and a relative RMSE level of 48% was obtained, respectively.  相似文献   

5.
The retrieval of tree and forest structural attributes from Light Detection and Ranging (LiDAR) data has focused largely on utilising canopy height models, but these have proved only partially useful for mapping and attributing stems in complex, multi-layered forests. As a complementary approach, this paper presents a new index, termed the Height-Scaled Crown Openness Index (HSCOI), which provides a quantitative measure of the relative penetration of LiDAR pulses into the canopy. The HSCOI was developed from small footprint discrete return LiDAR data acquired over mixed species woodlands and open forests near Injune, Queensland, Australia, and allowed individual trees to be located (including those in the sub-canopy) and attributed with height using relationships (r2 = 0.81, RMSE = 1.85 m, n = 115; 4 outliers removed) established with field data. A threshold contour of the HSCOI surface that encompassed ∼ 90% of LiDAR vegetation returns also facilitated mapping of forest areas, delineation of tree crowns and clusters, and estimation of canopy cover. At a stand level, tree density compared well with field measurements (r2 = 0.82, RMSE = 133 stems ha− 1, n = 30), with the most consistent results observed for stem densities ≤ 700 stems ha− 1. By combining information extracted from both the HSCOI and the canopy height model, predominant stem height (r2 = 0.91, RMSE = 0.77 m, n = 30), crown cover (r2 = 0.78, RMSE = 9.25%, n = 30), and Foliage & Branch Projective Cover (FBPC; r2 = 0.89, RMSE = 5.49%, n = 30) were estimated to levels sufficient for inventory of woodland and open forest structural types. When the approach was applied to forests in north east Victoria, stem density and crown cover were reliably estimated for forests with a structure similar to those observed in Queensland, but less so for forests of greater height and canopy closure.  相似文献   

6.
Improvements to a MODIS global terrestrial evapotranspiration algorithm   总被引:43,自引:0,他引:43  
MODIS global evapotranspiration (ET) products by Mu et al. [Mu, Q., Heinsch, F. A., Zhao, M., Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111, 519-536. doi: 10.1016/j.rse.2007.04.015] are the first regular 1-km2 land surface ET dataset for the 109.03 Million km2 global vegetated land areas at an 8-day interval. In this study, we have further improved the ET algorithm in Mu et al. (2007a, hereafter called old algorithm) by 1) simplifying the calculation of vegetation cover fraction; 2) calculating ET as the sum of daytime and nighttime components; 3) adding soil heat flux calculation; 4) improving estimates of stomatal conductance, aerodynamic resistance and boundary layer resistance; 5) separating dry canopy surface from the wet; and 6) dividing soil surface into saturated wet surface and moist surface. We compared the improved algorithm with the old one both globally and locally at 46 eddy flux towers. The global annual total ET over the vegetated land surface is 62.8 × 103 km3, agrees very well with other reported estimates of 65.5 × 103 km3 over the terrestrial land surface, which is much higher than 45.8 × 103 km3 estimated with the old algorithm. For ET evaluation at eddy flux towers, the improved algorithm reduces mean absolute bias (MAE) of daily ET from 0.39 mm day−1 to 0.33 mm day−1 driven by tower meteorological data, and from 0.40 mm day−1 to 0.31 mm day−1 driven by GMAO data, a global meteorological reanalysis dataset. MAE values by the improved ET algorithm are 24.6% and 24.1% of the ET measured from towers, within the range (10-30%) of the reported uncertainties in ET measurements, implying an enhanced accuracy of the improved algorithm. Compared to the old algorithm, the improved algorithm increases the skill score with tower-driven ET estimates from 0.50 to 0.55, and from 0.46 to 0.53 with GMAO-driven ET. Based on these results, the improved ET algorithm has a better performance in generating global ET data products, providing critical information on global terrestrial water and energy cycles and environmental changes.  相似文献   

7.
In the human body, the relation between fat and fat-free mass (muscles, bones etc.) is necessary for the diagnosis of obesity and prediction of its comorbidities. Numerous formulas, such as Deurenberg et al., Gallagher et al., Jackson and Pollock, Jackson et al. etc., are available to predict body fat percentage (BF%) from gender (GEN), age (AGE) and body mass index (BMI). These formulas are all fairly similar and widely applicable, since they provide an easy, low-cost and non-invasive prediction of BF%. This paper presents a program solution for predicting BF% based on artificial neural network (ANN). ANN training, validation and testing are done by randomly divided dataset that includes 2755 subjects: 1332 women (GEN = 0) and 1423 men (GEN = 1), with AGE from 18 to 88 y and BMI from 16.60 to 64.60 kg/m2. BF% was estimated by using Tanita bioelectrical impedance measurements (Tanita Corporation, Tokyo, Japan). ANN inputs are: GEN, AGE and BMI, and output is BF%. The predictive accuracy of our solution is 80.43%. The main goal of this paper is to promote a new approach to predicting BF% that has same complexity and costs but higher predictive accuracy than above-mentioned formulas.  相似文献   

8.
Spatial distribution models are increasingly used in ecological studies, but are limited by the poor accuracy of remote sensing (RS) for mapping microhabitat (< 0.1 ha) features. Mapping accuracy can be improved by combining advanced RS image-processing techniques with microhabitat data expressed as a structural complexity index (SCI). To test this idea, we used principal components analysis (PCA) and an additive SCI method developed for forest ecology (calculated by re-scaling and summing representative structural variables) to summarize 13 microhabitat-scale (0.04 ha) vegetation structure attributes describing the rare mountain bongo antelope's (Tragelaphus eurycerus isaaci) habitat in Kenya's Aberdare mountains. Microhabitat data were collected in 127 plots: 37 related to bongo habitat use, 90 from 1 km-spaced grid points representing overall habitat availability and bongo non-presence. We then assessed each SCI's effectiveness for discerning microhabitat variability and bongo habitat selection, using Wilcoxon Rank Sum tests for differences in mean SCI scores among plots divided into 4 vegetation classes, and the Area Under the Curve (AUC) of receiver operating characteristics from logistic regressions. We also examined the accuracy of predicted SCI scores resulting from regression models based on variables derived from a) ASTER imagery processed with spectral mixture and texture analysis, b) an SRTM DEM and c) rainfall data, using the 90 grid plots for model training and the bongo plots as an independent test dataset. Of the five SCIs derived, two performed best: the PCA-derived Canopy Structure Index (CSI) and an additive index summarizing 8 structural variables (AI8). CSI and AI8 showed significant differences between 5 of 6 vegetation class pairs, strong abilities to distinguish bongo-selected from available habitat (AUCs = 0.71 (CSI); 0.70 (AI8)), and predicted scores 60-110% more accurate than reported by other studies using RS to quantify individual microhabitat structural attributes (CSI model R2 = 0.51, RMSE = 0.19 (training) and 0.21 (test); AI8 model R2 = 0.46, RMSE = 0.17 (training) and 0.19 (test)). Repeating the Wilcoxon tests and logistic regressions with RS-predicted SCI values showed that AI8 most effectively preserved the patterns found with the observed SCIs. These results demonstrate that SCIs effectively characterize microhabitat structure and selection, and boost microhabitat mapping accuracy when combined with enhanced RS image-processing techniques. This approach can improve distribution models and broaden their applicability, makes RS more relevant to applied ecology, and shows that processing field data to be more compatible with RS can improve RS-based habitat mapping accuracy.  相似文献   

9.
Land-cover mapping efforts within the USGS Gap Analysis Program have traditionally been state-centered; each state having the responsibility of implementing a project design for the geographic area within their state boundaries. The Southwest Regional Gap Analysis Project (SWReGAP) was the first formal GAP project designed at a regional, multi-state scale. The project area comprises the southwestern states of Arizona, Colorado, Nevada, New Mexico, and Utah. The land-cover map/dataset was generated using regionally consistent geospatial data (Landsat ETM+ imagery (1999-2001) and DEM derivatives), similar field data collection protocols, a standardized land-cover legend, and a common modeling approach (decision tree classifier). Partitioning of mapping responsibilities amongst the five collaborating states was organized around ecoregion-based “mapping zones”. Over the course of 21/2 field seasons approximately 93,000 reference samples were collected directly, or obtained from other contemporary projects, for the land-cover modeling effort. The final map was made public in 2004 and contains 125 land-cover classes. An internal validation of 85 of the classes, representing 91% of the land area was performed. Agreement between withheld samples and the validated dataset was 61% (KHAT = .60, n = 17,030). This paper presents an overview of the methodologies used to create the regional land-cover dataset and highlights issues associated with large-area mapping within a coordinated, multi-institutional management framework.  相似文献   

10.
Forest structure data derived from lidar is being used in forest science and management for inventory analysis, biomass estimation, and wildlife habitat analysis. Regression analysis dominated previous approaches to the derivation of tree stem and crown parameters from lidar. The regression model for tree parameters is locally applied based on vertical lidar point density, the tree species involved, and stand structure in the specific research area. The results of this approach, therefore, are location-specific, limiting its applicability to other areas. For a more widely applicable approach to derive tree parameters, we developed an innovative method called ‘wrapped surface reconstruction’ that employs radial basis functions and an isosurface. Utilizing computer graphics, we capture the exact shape of an irregular tree crown of various tree species based on the lidar point cloud and visualize their exact crown formation in three-dimensional space. To validate the tree parameters given by our wrapped surface approach, survey-grade equipment (a total station) was used to measure the crown shape. Four vantage points were established for each of 55 trees to capture whole-tree crown profiles georeferenced with post-processed differential GPS points. The observed tree profiles were linearly interpolated to estimate crown volume. These fieldwork-generated profiles were compared with the wrapped surface to assess goodness of fit. For coniferous trees, the following tree crown parameters derived by the wrapped surface method were highly correlated (< 0.05) with the total station-derived measurements: tree height (R2 = 0.95), crown width (R2 = 0.80), live crown base (R2 = 0.92), height of the lowest branch (R2 = 0.72), and crown volume (R2 = 0.84). For deciduous trees, wrapped surface-derived parameters of tree height (R2 = 0.96), crown width (R2 = 0.75), live crown base (R2 = 0.53), height of the lowest branch (R2 = 0.51), and crown volume (R2 = 0.89) were correlated with the total station-derived measurements. The wrapped surface technique is less susceptible to errors in estimation of tree parameters because of exact interpolation using the radial basis functions. The effect of diminished energy return causes the low correlation for lowest branches in deciduous trees (R2 = 0.51), even though leaf-off lidar data was used. The wrapped surface provides fast and automated detection of micro-scale tree parameters for specific applications in areas such as tree physiology, fire modeling, and forest inventory.  相似文献   

11.
A ground-based, upward-scanning, near-infrared lidar, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves forest stand structural parameters, including mean diameter at breast height (DBH), stem count density (stems/area), basal area, and above-ground woody biomass with very good accuracy in six New England hardwood and conifer forest stands. Comparing forest structural parameters retrieved using EVI data with extensive ground measurements, we found excellent agreement at the site level using five EVI scans (plots) per site (R2 = 0.94-0.99); very good agreement at the plot level for stem count density and biomass (R2 = 0.90-0.85); and good agreement at the plot level for mean DBH and basal area (R2 = 0.48-0.66). The observed variance at site and plot levels suggest that a sample area of at least 1 ha (104 m2) is required to estimate these parameters accurately at the stand level using either lidar-based or conventional methods. The algorithms and procedures used to retrieve these structural parameters are dependent on the unique ability of the Echidna® lidar to digitize the full waveform of the scattered lidar pulse as it returns to the instrument, which allows consistent separation of scattering by trunks and large branches from scattering by leaves. This successful application of ground-based lidar technology opens the door to rapid and accurate measurement of biomass and timber volume in areal sampling scenarios and as a calibration and validation tool for mapping biomass using airborne or spaceborne remotely sensed data.  相似文献   

12.
Three mature stands at the forest test site Järvselja, Estonia were extensively measured for using as a validation dataset for heterogeneous canopy reflectance models. In order to enable the reconstruction of the 3-D architecture of these 100 × 100 m2 test plots, individual tree positions and crown dimensions were inventoried. In addition, leaf, needle, stem bark and branch bark visible and near-infrared (VNIR) reflectance spectra, and VNIR reflectance spectra of ground vegetation were measured. This in situ dataset is supported by atmospherically and radiometrically corrected Mode 3 CHRIS reflectance spectra for three view directions, and top of canopy VNIR nadir spectra from airborne measurements. Details of measurements, instruments in use, data processing, and access to data are described in a technical report which is available on-line.  相似文献   

13.
14.
The potential of canopy reflectance modelling to retrieve simultaneously several structural variables in managed Norway spruce stands was investigated using the “Invertible Forest Reflectance Model”, INFORM. INFORM is an innovative extension of the FLIM model, with crown transparency, infinite crown reflectance and understory reflectance simulated using physically based sub-models (SAILH, LIBERTY and PROSPECT). The INFORM model was inverted with hyperspectral airborne HyMap data using a neural network approach. INFORM based estimates of forest structural variables were produced using site-specific ranges of stand structural variables. A relatively simple three layer feed-forward backpropagation neural network with two input neurons, one neuron in the hidden layer and three output neurons was employed to map leaf area index (LAI), crown coverage and stem density.To identify the optimum 2-band spectral subset to be used in the inversion process, all 2-band combinations of the HyMap dataset were systematically evaluated for model inversion. Field measurements of structural variables from 39 forest stands were used to validate the maps produced from HyMap imagery. Using two HyMap wavebands at 837 nm and 1148 nm the obtained accuracy of the LAI map amounts to an rmse of 0.58 (relative rmse = 18% of mean, R2 = 0.73). With HyMap data resampled to Landsat TM spectral bands and using two “optimum” bands at 840 nm and 1650 nm, rmse was 0.66 and relative rmse 21%. In contrast to approaches based on empirical relations between spectral vegetation indices and structural variables, the main advantage of the inversion approach is that it does not require previous calibration.  相似文献   

15.

In this study, changes in the temporal and volume contributions (| n | temporal, | n | volume ) to the observed ERS-1/2 coherence are modelled in response to an increase of forest woody biomass in Central Siberia. It is demonstrated that the distance between neighbouring trees and the vertical structure of boreal forest canopies must be accounted for to model | n | volume . Results confirm that | n | temporal is the main decorrelation factor although | n | volume contributes significantly to the overall loss of coherence observed over mature forests.  相似文献   

16.
Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars < 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (> 500 ha) burn scars that accounted for the majority of all fire-damaged forests in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 km2) were an order of magnitude higher than during the 1997-1998 El Niño event (124 km2 and 39 km2, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series.  相似文献   

17.
The direct retrieval of canopy height and the estimation of aboveground biomass are two important measures of forest structure that can be quantified by airborne laser scanning at landscape scales. These and other metrics are central to studies attempting to quantify global carbon cycles and to improve understanding of the spatial variation in forest structure evident within differing biomes. Data acquired using NASA's Laser Vegetation Imaging Sensor (LVIS) over the Bartlett Experimental Forest (BEF) in central New Hampshire (USA) was used to assess the performance of waveform lidar in a northern temperate mixed conifer and deciduous forest.Using coincident plots established for this study, we found strong agreement between field and lidar measurements of height (r2 = 0.80, p < 0.000) at the footprint level. Allometric calculations of aboveground biomass (AGBM) and LVIS metrics (AGBM: r2 = 0.61, PRESS RMSE = 58.0 Mg ha− 1, p < 0.000) and quadratic mean stem diameter (QMSD) and LVIS metrics (r2 = 0.54, p = 0.002) also showed good agreement at the footprint level. Application of a generalized equation for determining AGBM proposed by Lefsky et al. (2002a) to footprint-level field data from Bartlett resulted in a coefficient of determination of 0.55; RMSE = 64.4 Mg ha− 1; p = 0.002. This is slightly weaker than the strongest relationship found with the best-fit single term regression model.Relationships between a permanent grid of USDA Forest Service inventory plots and the mean values of aggregated LVIS metrics, however, were not as strong. This discrepancy suggests that validation efforts must be cautious in using pre-existing field data networks as a sole means of calibrating and verifying such remote sensing data. Stratification based on land-use or species composition, however, did provide the means to improve regression relationships at this scale. Regression models established at the footprint level for AGBM and QMSD were applied to LVIS data to generate predicted values for the whole of Bartlett. The accuracy of these models was assessed using varying subsets of the USFS NERS plot data. Coefficient of determinations ranged from fair to strong with aspects of land-use history and species composition influencing both the fit and the level of error seen in the predicted relationships.  相似文献   

18.
Improved wildland fire emission inventory methods are needed to support air quality forecasting and guide the development of air shed management strategies. Air quality forecasting requires dynamic fire emission estimates that are generated in a timely manner to support real-time operations. In the regulatory and planning realm, emission inventories are essential for quantitatively assessing the contribution of wildfire to air pollution. The development of wildland fire emission inventories depends on burned area as a critical input. This study presents a Moderate Resolution Imaging Spectroradiometer (MODIS) - direct broadcast (DB) burned area mapping algorithm designed to support air quality forecasting and emission inventory development. The algorithm combines active fire locations and single satellite scene burn scar detections to provide a rapid yet robust mapping of burned area. Using the U.S. Forest Service Fire Sciences Laboratory (FiSL) MODIS-DB receiving station in Missoula, Montana, the algorithm provided daily measurements of burned area for wildfire events in the western U.S. in 2006 and 2007. We evaluated the algorithm's fire detection rate and burned area mapping using fire perimeter data and burn scar information derived from high resolution satellite imagery. The FiSL MODIS-DB system detected 87% of all reference fires > 4 km2, and 93% of all reference fires > 10 km2. The burned area was highly correlated (R2 = 0.93) with a high resolution imagery reference burn scar dataset, but exhibited a large over estimation of burned area (56%). The reference burn scar dataset was used to calibrate the algorithm response and quantify the uncertainty in the burned area measurement at the fire incident level. An objective, empirical error based approach was employed to quantify the uncertainty of our burned area measurement and provide a metric that is meaningful in context of remotely sensed burned area and emission inventories. The algorithm uncertainty is ± 36% for fires 50 km2 in size, improving to ± 31% at a fire size of 100 km2. Fires in this size range account for a substantial portion of burned area in the western U.S. (77% of burned area is due to fires > 50 km2, and 66% results from fires > 100 km2). The dominance of these large wildfires in burned area, duration, and emissions makes these events a significant concern of air quality forecasters and regulators. With daily coverage at 1-km2 spatial resolution, and a quantified measurement uncertainty, the burned area mapping algorithm presented in this paper is well suited for the development of wildfire emission inventories. Furthermore, the algorithm's DB implementation enables time sensitive burned area mapping to support operational air quality forecasting.  相似文献   

19.
Mean stand height is an important parameter for forest volume and biomass estimation in support of monitoring and management activities. Information on mean stand height is typically obtained through the manual interpretation of aerial photography, often supplemented by the collection of field calibration data. In remote areas where forest management practices may not be spatially exhaustive or where it is difficult to acquire aerial photography, alternate approaches for estimating stand height are required. One approach is to use very high spatial resolution (VHSR) satellite imagery (pixels sided less than 1 m) as a surrogate for air photos. In this research we demonstrate an approach for modelling mean stand height at four sites in the Yukon Territory, Canada, from QuickBird panchromatic imagery. An object-based approach was used to generate homogenous segments from the imagery (analogous to manually delineated forest stands) and an algorithm was used to automatically delineate individual tree crowns within the segments. A regression tree was used to predict mean stand height from stand-level metrics generated from the image grey-levels and within-stand objects relating individual tree crown characteristics. Heights were manually interpreted from the QuickBird imagery and divided into separate sets of calibration and validation data. The effects of calibration data set size and the input metrics used on the regression tree results were also assessed. The approach resulted in a model with a significant R2 of 0.53 and an RMSE of 2.84 m. In addition, 84.6% of the stand height estimates were within the acceptable error for photo interpreted heights, as specified by the forest inventory standards of British Columbia. Furthermore, residual errors from the model were smallest for the stands that had larger mean heights (i.e., > 20 m), which aids in reducing error in subsequent estimates of biomass or volume (since stands with larger trees contribute more to overall estimates of volume or biomass). Estimated and manually interpreted heights were reclassified into 5-metre height classes (a schema frequently used for forest analysis and modelling applications) and compared; classes corresponded in 54% of stands assessed, and all stands had an estimated height class that was within ± 1 class of their actual class. This study demonstrates the capacity of VHSR panchromatic imagery (in this case QuickBird) for generating useful estimates of mean stand heights in unmonitored, remote, or inaccessible forest areas.  相似文献   

20.
Remote sensing can be considered a key instrument for studies related to forests and their dynamics. At present, the increasing availability of multisensor acquisitions over the same areas, offers the possibility to combine data from different sensors (e.g., optical, RADAR, LiDAR). This paper presents an analysis on the fusion of airborne LiDAR and satellite multispectral data (IRS 1C LISS III), for the prediction of forest stem volume at plot level in a complex mountain area (Province of Trento, Southern Italian Alps), characterized by different tree species, complex morphology (i.e. altitude ranges from 65 m to 3700 m above sea level), and a range of different climates (from the sub-Mediterranean to Alpine type). 799 sample plots were randomly distributed over the 3000 km2 of the forested areas of the Trento Province. From each plot, a set of variables were extracted from both LiDAR and multispectral data. A regression analysis was carried out considering two data sources (LiDAR and multispectral) and their combination, and dividing the plot areas into groups according to their species composition, altitude and slope. Experimental results show that the combination of LiDAR and IRS 1C LISS III data, for the estimation of stem volume, is effective in all the experiments considered. The best developed models comprise variables extracted from both of these data sources. The RMSE% on an independent validation set for the stem volume estimation models ranges between 17.2% and 26.5%, considering macro sets of tree species (deciduous, evergreen and mixed), between 17.5% and 29.0%, considering dominant species plots, and between 15.5% and 21.3% considering altitude and slope sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号