首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Properties of multi-temporal ERS-1/2 tandem coherence in boreal forests and retrieval accuracy of forest stem volume have been investigated mostly for small, managed forest areas. The clear seasonal trends and the high accuracy of the retrieval are therefore valid for specific types of forest and question is if these findings extend to large areas with different forest types in a similar manner. Using multi-temporal ERS-1/2 coherence data and extensive sets of inventory data at stand level at seven forest compartments in Central Siberia we confirm that the trend of coherence as a function of stem volume is mainly driven by the environmental conditions at acquisition. In addition, we have now found that the variability of the coherence for a given stem volume are due to spatial variations of the environmental conditions, strong topography (slope > 10°), small stand size (< 3-4 ha) and low relative stocking (< 50%). Further deviations can be related to errors in the ground data. Stem volume retrieval behaves consistently under stable winter frozen conditions. For stands larger than 3-4 ha and relative stocking of at least 50%, a relative RMSE of 20-25% can be considered the effective retrieval error achievable in Siberian boreal forest. Combined with previous experience from managed test forests in Sweden and Finland, C-band ERS-1/2 tandem coherence observations acquired under stable winter conditions with a snow cover and an at least moderate breeze can be considered so far the most suitable spaceborne remote sensing observable for the estimation of forest stem volume in homogeneous forest stands throughout the boreal zone.  相似文献   

2.
Estimating Siberian timber volume using MODIS and ICESat/GLAS   总被引:4,自引:0,他引:4  
Geosciences Laser Altimeter System (GLAS) space LiDAR data are used to attribute a MODerate resolution Imaging Spectrometer (MODIS) 500 m land cover classification of a 10° latitude by 12° longitude study area in south-central Siberia. Timber volume estimates are generated for 16 forest classes, i.e., four forest cover types × four canopy density classes, across this 811,414 km2 area and compared with a ground-based regional volume estimate. Two regional GLAS/MODIS timber volume products, one considering only those pulses falling on slopes ≤ 10° and one utilizing all GLAS pulses regardless of slope, are generated. Using a two-phase(GLAS-ground plot) sampling design, GLAS/MODIS volumes average 163.4 ± 11.8 m3/ha across all 16 forest classes based on GLAS pulses on slopes ≤ 10° and 171.9 ± 12.4 m3/ha considering GLAS shots on all slopes. The increase in regional GLAS volume per-hectare estimates as a function of increasing slope most likely illustrate the effects of vertical waveform expansion due to the convolution of topography with the forest canopy response. A comparable, independent, ground-based estimate is 146 m3/ha [Shepashenko, D., Shvidenko, A., and Nilsson, S. (1998). Phytomass (live biomass) and carbon of Siberian forests. Biomass and Bioenergy, 14, 21-31], a difference of 11.9% and 17.7% for GLAS shots on slopes ≤ 10° and all GLAS shots regardless of slope, respectively. A ground-based estimate of total volume for the entire study area, 7.46 × 109 m3, is derived using Shepashenko et al.'s per-hectare volume estimate in conjunction with forest area derived from a 1990 forest map [Grasia, M.G. (ed.). (1990). Forest Map of USSR. Soyuzgiproleskhoz, Moscow, RU. Scale: 1:2,500,000]. The comparable GLAS/MODIS estimate is 7.38 × 109 m3, a difference of less than 1.1%. Results indicate that GLAS data can be used to attribute digital land cover maps to estimate forest resources over subcontinental areas encompassing hundreds of thousands of square kilometers.  相似文献   

3.
This study examines the feasibility of using MODIS images (MOD02 products) for the detection and monitoring of forest clear cuts in the boreal forest in north-west Russia. The proposed approach combines three change detection methods, including Change Vector Analysis, Textural Analysis using the coefficient of variation, and Constrained Energy Minimization analysis. For each individual method a series of thresholds was tested in order to obtain an optimal identification of clear cuts. A clear cut detection was only accepted if the change was detected by each individual method. All input parameters needed were derived from a set of reference clear cuts, mapped from 30 m resolution Landsat ETM+ imagery and used also for accuracy assessment. Change assessment was tested with MODIS images of two and of three acquisition dates. Referring to two test sites (Karelia, Komi) the detection omission and commission errors, assessed within a 3 × 3 pixels moving kernel, were at 23% and 8%, and at 21% and 17%, respectively. In terms of detectable clear cut size, a detection accuracy of about 90% can be expected for clear cuts in the size category above 15 ha, which contains the majority of cuts in the region. MODIS therefore provides good capabilities for large scale monitoring of major clear cut activities in the boreal forests of north-western Russia.  相似文献   

4.
Siberia's boreal forests represent an economically and ecologically precious resource, a significant part of which is not monitored on a regular basis. Synthetic aperture radars (SARs), with their sensitivity to forest biomass, offer mapping capabilities that could provide valuable up-to-date information, for example about fire damage or logging activity. The European Commission SIBERIA project had the aim of mapping an area of approximately 1 million km2 in Siberia using SAR data from two satellite sources: the tandem mission of the European Remote Sensing Satellites ERS-1/2 and the Japanese Earth Resource Satellite JERS-1. Mosaics of ERS tandem interferometric coherence and JERS backscattering coefficient show the wealth of information contained in these data but they also show large differences in radar response between neighbouring images. To create one homogeneous forest map, adaptive methods which are able to account for brightness changes due to environmental effects were required. In this paper an adaptive empirical model to determine growing stock volume classes using the ERS tandem coherence and the JERS backscatter data is described. For growing stock volume classes up to 80 m3/ha, accuracies of over 80% are achieved for over a hundred ERS frames at a spatial resolution of 50 m.  相似文献   

5.
Methods for the estimation of forest growing stock volume (GSV) are a major topic of investigation in the remote sensing community. The boreal zone contains almost 30% of global forest by area but measurements of forest resources are often outdated. Although past and current spaceborne synthetic aperture radar (SAR) backscatter data are not optimal for forest-related studies, a multi-temporal combination of individual GSV estimates can improve the retrieval as compared to the single-image case. This feature has been included in a novel GSV retrieval approach, hereafter referred to as the BIOMASAR algorithm. One innovative aspect of the algorithm is its independence from in situ measurements for model training. Model parameter estimates are obtained from central tendency statistics of the backscatter measurements for unvegetated and dense forest areas, which can be selected by means of a continuous tree canopy cover product, such as the MODIS Vegetation Continuous Fields product. In this paper, the performance of the algorithm has been evaluated using hyper-temporal series of C-band Envisat Advanced SAR (ASAR) images acquired in ScanSAR mode at 100 m and 1 km pixel size. To assess the robustness of the retrieval approach, study areas in Central Siberia (Russia), Sweden and Québec (Canada) have been considered. The algorithm validation activities demonstrated that the automatic approach implemented in the BIOMASAR algorithm performed similarly to traditional approaches based on in situ data. The retrieved GSV showed no saturation up to 300 m3/ha, which represented almost the entire range of GSV at the study areas. The relative root mean square error (RMSE) was between 34.2% and 48.1% at 1 km pixel size. Larger errors were obtained at 100 m because of local errors in the reference datasets. Averaging GSV estimates over neighboring pixels improved the retrieval statistics substantially. For an aggregation factor of 10 × 10 pixels, the relative RMSE was below 25%, regardless of the original resolution of the SAR data.  相似文献   

6.
The use of spaceborne synthetic aperture radar (SAR) systems to estimate stem volume and biomass in boreal forests has shown some promising results, but with saturation of the radar backscatter at relatively low stem volumes and limited accuracy of stem volume estimation. These limitations have motivated evaluation of more advanced methods, such as interferometry. The results presented in this study show that ERS interferometry, under favourable conditions, may be used to estimate stem volume at stand level with saturation level and accuracy useful for operational forestry management planning in boreal forests. Five interferograms were analysed, covering a test site located in the central part of Sweden with stem volume in the range of 0-305 m3 ha-1. The best interferogram showed a linear relationship between stem volume and coherence with a root mean square error (RMSE) of approximately 26 m3 ha-1, corresponding to 20% of the average stem volume, throughout the range of stem volume. No saturation was observed up to the maximum stem volume. However, the sensitivity of coherence to stem volume varied considerably between the interferograms. Finally, four SPOT XS images were evaluated and compared with the stem volume estimations obtained from the interferograms, resulting in a relative RMSE of about 24% of the stem volume, for the best case. The estimation of stem volume using coherence data was found to be better than optical data for stem volumes exceeding about 110 m3 ha-1. The statistical analysis was performed using linear regression models with cross-validation.  相似文献   

7.
The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using a production efficiency approach. In this study, the 2001 MODIS GPP product was compared with scaled GPP estimates (25 km2) based on ground measurements at two forested sites. The ground-based GPP scaling approach relied on a carbon cycle process model run in a spatially distributed mode. Land cover classification and maximum annual leaf area index, as derived from Landsat ETM+ imagery, were used in model initiation. The model was driven by daily meteorological observations from an eddy covariance flux tower situated at the center of each site. Model simulated GPPs were corroborated with daily GPP estimates from the flux tower. At the hardwood forest site, the MODIS GPP phenology started earlier than was indicated by the scaled GPP, and the summertime GPP from MODIS was generally lower than the scaled GPP values. The fall-off in production at the end of the growing season was similar to the validation data. At the boreal forest site, the GPP phenologies generally agreed because both responded to the strong signal associated with minimum temperature. The midsummer MODIS GPP there was generally higher than the ground-based GPP. The differences between the MODIS GPP products and the ground-based GPPs were driven by differences in the timing of FPAR and the magnitude of light use efficiency as well as by differences in other inputs to the MODIS GPP algorithm—daily incident PAR, minimum temperature, and vapor pressure deficit. Ground-based scaling of GPP has the potential to improve the parameterization of light use efficiency in satellite-based GPP monitoring algorithms.  相似文献   

8.
The overarching goal of this study was to map irrigated areas in the Ganges and Indus river basins using near-continuous time-series (8-day), 500-m resolution, 7-band MODIS land data for 2001-2002. A multitemporal analysis was conducted, based on a mega file of 294 wavebands, made from 42 MODIS images each of 7 bands. Complementary field data were gathered from 196 locations. The study began with the development of two cloud removal algorithms (CRAs) for MODIS 7-band reflectivity data, named: (a) blue-band minimum reflectivity threshold and (b) visible-band minimum reflectivity threshold.A series of innovative methods and approaches were introduced to analyze time-series MODIS data and consisted of: (a) brightness-greenness-wetness (BGW) RED-NIR 2-dimensional feature space (2-d FS) plots for each of the 42 dates, (b) end-member (spectral angle) analysis using RED-NIR single date (RN-SD) plots, (c) combining several RN-SDs in a single plot to develop RED-NIR multidate (RN-MDs) plots in order to help track changes in magnitude and direction of spectral classes in 2-d FS, (d) introduction of a unique concept of space-time spiral curves (ST-SCs) to continuously track class dynamics over time and space and to determine class separability at various time periods within and across seasons, and (e) to establish unique class signatures based on NDVI (CS-NDVI) and/or multiband reflectivity (CS-MBR), for each class, and demonstrate their intra- and inter-seasonal and intra- and inter-year characteristics. The results from these techniques and methods enabled us to gather precise information on onset-peak-senescence-duration of each irrigated and rainfed classes.The resulting 29 land use/land cover (LULC) map consisted of 6 unique irrigated area classes in the total study area of 133,021,156 ha within the Ganges and Indus basins. Of this, the net irrigated area was estimated as 33.08 million hectares—26.6% by canals and 73.4z5 by groundwater. Of the 33.08 Mha, 98.4% of the area was irrigated during khariff (Southwest monsoonal rainy season during June-October), 92.5% irrigated during Rabi (Northeast monsoonal rainy season during November-February), and only 3.5% continuously through the year.Quantitative Fuzzy Classification Accuracy Assessment (QFCAA) showed that the accuracies of the 29 classes varied from 56% to 100%—with 17 classes above 80% accurate and 23 classes above 70% accurate.The MODIS band 5 centered at 1240 nm provided the best separability in mapping irrigated area classes, followed by bands 2 (centered at 859 nm), 7 (2130 nm) and 6 (1640 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号