首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
This study presents an alternative assessment of the MODIS LAI product for a 58,000 ha evergreen needleleaf forest located in the western Rocky Mountain range in northern Idaho by using lidar data to model (R2 = 0.86, RMSE = 0.76) and map LAI at higher resolution across a large number of MODIS pixels in their entirety. Moderate resolution (30 m) lidar-based LAI estimates were aggregated to the resolution of the 1-km MODIS LAI product and compared to temporally-coincident MODIS retrievals. Differences in the MODIS and lidar-derived values of LAI were grouped and analyzed by several different factors, including MODIS retrieval algorithm, sun/sensor geometry, and sub-pixel heterogeneity in both vegetation and terrain characteristics. Of particular interest is the disparity in the results when MODIS LAI was analyzed according to algorithm retrieval class. We observed relatively good agreement between lidar-derived and MODIS LAI values for pixels retrieved with the main RT algorithm without saturation for LAI LAI ≤ 4. Moreover, for the entire range of LAI values, considerable overestimation of LAI (relative to lidar-derived LAI) occurred when either the main RT with saturation or back-up algorithm retrievals were used to populate the composite product regardless of sub-pixel vegetation structural complexity or sun/sensor geometry. These results are significant because algorithm retrievals based on the main radiative transfer algorithm with or without saturation are characterized as suitable for validation and subsequent ecosystem modeling, yet the magnitude of difference appears to be specific to retrieval quality class and vegetation structural characteristics.  相似文献   

2.
A prototype product suite, containing the Terra 8-day, Aqua 8-day, Terra-Aqua combined 8- and 4-day products, was generated as part of testing for the next version (Collection 5) of the MODerate resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) products. These products were analyzed for consistency between Terra and Aqua retrievals over the following data subsets in North America: single 8-day composite over the whole continent and annual time series over three selected MODIS tiles (1200 × 1200 km). The potential for combining retrievals from the two sensors to derive improved products by reducing the impact of environmental conditions and temporal compositing period was also explored. The results suggest no significant discrepancies between large area (from continent to MODIS tile) averages of the Terra and Aqua 8-day LAI and surface reflectances products. The differences over smaller regions, however, can be large due to the random nature of residual atmospheric effects. High quality retrievals from the radiative transfer based algorithm can be expected in 90-95% of the pixels with mostly herbaceous cover and about 50-75% of the pixels with woody vegetation during the growing season. The quality of retrievals during the growing season is mostly restricted by aerosol contamination of the MODIS data. The Terra-Aqua combined 8-day product helps to minimize this effect and increases the number of high quality retrievals by 10-20% over woody vegetation. The combined 8-day product does not improve the number of high quality retrievals during the winter period because the extent of snow contamination of Terra and Aqua observations is similar. Likewise, cloud contamination in the single-sensor and combined products is also similar. The LAI magnitudes, seasonal profiles and retrieval quality in the combined 4-day product are comparable to those in the single-sensor 8-day products. Thus, the combined 4-day product doubles the temporal resolution of the seasonal cycle, which facilitates phenology monitoring in application studies during vegetation transition periods. Both Terra and Aqua LAI products show anomalous seasonality in boreal needle leaf forests, due to limitations of the radiative transfer algorithm to model seasonal variations of MODIS surface reflectance data with respect to solar zenith angle. Finally, this study suggests that further improvement of the MODIS LAI products is mainly restricted by the accuracy of the MODIS observations.  相似文献   

3.
A simple data analysis technique for vegetation leaf area index (LAI) using Moderate Resolution Imaging Spectroradiometer (MODIS) data is presented. The objective is to generate LAI data that is appropriate for numerical weather prediction. A series of techniques and procedures which includes data quality control, time-series data smoothing, and simple data analysis is applied. The LAI analysis is an optimal combination of the MODIS observations and derived climatology, depending on their associated errors σo and σc. The “best estimate” LAI is derived from a simple three-point smoothing technique combined with a selection of maximum LAI (after data quality control) values to ensure a higher quality. The LAI climatology is a time smoothed mean value of the “best estimate” LAI during the years of 2002-2004. The observation error is obtained by comparing the MODIS observed LAI with the “best estimate” of the LAI, and the climatological error is obtained by comparing the “best estimate” of LAI with the climatological LAI value. The LAI analysis is the result of a weighting between these two errors. Demonstration of the method described in this paper is presented for the 15-km grid of Meteorological Service of Canada (MSC)'s regional version of the numerical weather prediction model. The final LAI analyses have a relatively smooth temporal evolution, which makes them more appropriate for environmental prediction than the original MODIS LAI observation data. They are also more realistic than the LAI data currently used operationally at the MSC which is based on land-cover databases.  相似文献   

4.
The Satellite Application Facility on Land Surface Analysis (Land-SAF) aims to provide land surface variables for the meteorological and environmental science communities from EUMETSAT satellites. This study assesses the performance of a simplified (i.e. random distribution of vegetation is assumed) version of the Land-SAF algorithm for the estimation of Leaf Area Index (LAI) when prototyped with VEGETATION (processed in CYCLOPES program) and MODIS reflectances. The prototype estimates of LAI are evaluated both by comparison with validated CYCLOPES and MODIS LAI products derived from the same sensors and directly through comparison with ground-based estimates. Emphasis is given on evaluating the impact of the algorithm and input data on LAI retrieval discrepancies. Analysis is achieved over Europe for the 2000-2003 period. The results demonstrate the capacity of the Land-SAF algorithm to retrieve consistent LAI estimates from multiple optical sensors even when their reflectances present systematic differences. High spatial and temporal consistencies between Land-SAF prototype estimates and existing LAI products are found. The differences between Land-SAF and CYCLOPES LAI are lower than their uncertainties (RMSE (relative RMSE) within 0.4 (30%)). Land-SAF prototype estimates and MODIS LAI show larger discrepancies mainly due to differences in the vegetation structure representation and algorithm assumptions (RMSE ranging from 0.2 (30%) up to 0.8 (40%)). Land-SAF prototype provides higher LAI values than MODIS for herbaceous canopies (i.e. shrubs, grasses and crops) and lower values for woody biomes (i.e. savannas and forests). Direct validation indicates that LAI estimates from prototyping of the Land-SAF algorithm with CYCLOPES and MODIS reflectances achieve similar performances (differences with ground measurements are lower than 0.5 LAI units in 60% and 50% of the cases, respectively) as CYCLOPES and MODIS LAI products. Results from this prototyping exercise appear useful for improved retrieval of LAI and constitute a step forward for refinement, validation and consolidation of the Land-SAF algorithm.  相似文献   

5.
The MODIS land science team produces a number of standard products, including land cover and leaf area index (LAI). Critical to the success of MODIS and other sensor products is an independent evaluation of product quality. In that context, we describe a study using field data and Landsat ETM+ to map land cover and LAI at four 49-km2 sites in North America containing agricultural cropland (AGRO), prairie grassland (KONZ), boreal needleleaf forest, and temperate mixed forest. The purpose was to: (1) develop accurate maps of land cover, based on the MODIS IGBP (International Geosphere-Biosphere Programme) land cover classification scheme; (2) derive continuous surfaces of LAI that capture the mean and variability of the LAI field measurements; and (3) conduct initial MODIS validation exercises to assess the quality of early (i.e., provisional) MODIS products. ETM+ land cover maps varied in overall accuracy from 81% to 95%. The boreal forest was the most spatially complex, had the greatest number of classes, and the lowest accuracy. The intensive agricultural cropland had the simplest spatial structure, the least number of classes, and the highest overall accuracy. At each site, mapped LAI patterns generally followed patterns of land cover across the site. Predicted versus observed LAI indicated a high degree of correspondence between field-based measures and ETM+ predictions of LAI. Direct comparisons of ETM+ land cover maps with Collection 3 MODIS cover maps revealed several important distinctions and similarities. One obvious difference was associated with image/map resolution. ETM+ captured much of the spatial complexity of land cover at the sites. In contrast, the relatively coarse resolution of MODIS did not allow for that level of spatial detail. Over the extent of all sites, the greatest difference was an overprediction by MODIS of evergreen needleleaf forest cover at the boreal forest site, which consisted largely of open shrubland, woody savanna, and savanna. At the agricultural, temperate mixed forest, and prairie grassland sites, ETM+ and MODIS cover estimates were similar. Collection 3 MODIS-based LAI estimates were considerably higher (up to 4 m2 m−2) than those based on ETM+ LAI at each site. There are numerous probable reasons for this, the most important being the algorithms' sensitivity to MODIS reflectance calibration, its use of a prelaunch AVHRR-based land cover map, and its apparent reliance on mainly red and near-IR reflectance. Samples of Collection 4 LAI products were examined and found to consist of significantly improved LAI predictions for KONZ, and to some extent for AGRO, but not for the other two sites. In this study, we demonstrate that MODIS reflectance data are highly correlated with LAI across three study sites, with relationships increasing in strength from 500 to 1000 m spatial resolution, when shortwave-infrared bands are included.  相似文献   

6.
Leaf area index (LAI) is an important variable needed by various land surface process models. It has been produced operationally from the Moderate Resolution Imaging Spectroradiometer (MODIS) data using a look-up table (LUT) method, but the inversion accuracy still needs significant improvements. We propose an alternative method in this study that integrates both the radiative transfer (RT) simulation and nonparametric regression methods. Two nonparametric regression methods (i.e., the neural network [NN] and the projection pursuit regression [PPR]) were examined. An integrated database was constructed from radiative transfer simulations tuned for two broad biome categories (broadleaf and needleleaf vegetations). A new soil reflectance index (SRI) and analytically simulated leaf optical properties were used in the parameterization process. This algorithm was tested in two sites, one at Maryland, USA, a middle latitude temperate agricultural area, and the other at Canada, a boreal forest site, and LAI was accurately estimated. The derived LAI maps were also compared with those from MODIS science team and ETM+ data. The MODIS standard LAI products were found consistent with our results for broadleaf crops, needleleaf forest, and other cover types, but overestimated broadleaf forest by 2.0-3.0 due to the complex biome types.  相似文献   

7.
Lidar provides enhanced abilities to remotely map leaf area index (LAI) with improved accuracies. We aim to further explore the capability of discrete-return lidar for estimating LAI over a pine-dominated forest in East Texas, with a secondary goal to compare the lidar-derived LAI map and the GLOBCARBON moderate-resolution satellite LAI product. Specific problems we addressed include (1) evaluating the effects of analysts and algorithms on in-situ LAI estimates from hemispherical photographs (hemiphoto), (2) examining the effectiveness of various lidar metrics, including laser penetration, canopy height and foliage density metrics, to predict LAI, (3) assessing the utility of integrating Quickbird multispectral imagery with lidar for improving the LAI estimate accuracy, and (4) developing a scheme to co-register the lidar and satellite LAI maps and evaluating the consistency between them. Results show that the use of different analysts or algorithms in analyzing hemiphotos caused an average uncertainty of 0.35 in in-situ LAI, and that several laser penetration metrics in logarithm models were more effective than other lidar metrics, with the best one explaining 84% of the variation in the in-situ LAI (RMSE = 0.29 LAI). The selection of plot size and height threshold in calculating laser penetration metrics greatly affected the effectiveness of these metrics. The combined use of NDVI and lidar metrics did not significantly improve estimation over the use of lidar alone. We also found that mis-registration could induce a large artificial discrepancy into the pixelwise comparison between the coarse-resolution satellite and fine-resolution lidar-derived LAI maps. By compensating for a systematic sub-pixel shift error, the correlation between two maps increased from 0.08 to 0.85 for pines (n = 24 pixels). However, the absolute differences between the two LAI maps still remained large due to the inaccuracy in accounting for clumping effects. Overall, our findings imply that lidar offers a superior tool for mapping LAI at local to regional scales as compared to optical remote sensing, accuracies of lidar-estimate LAI are affected not only by the choice of models but also by the absolute accuracy of in-situ reference LAI used for model calibration, and lidar-derived LAI maps can serve as reliable references for validating moderate-resolution satellite LAI products over large areas.  相似文献   

8.
The aim of this paper was to serve as a pilot study for running a physically based forest reflectance model through an operational forest management data base in Finnish coniferous forests. The LAI values of 250 boreal coniferous stands were retrieved with the physically based model by inversion from a SPOT HRVIR1 image. The use of three spectral vegetation indices (NDVI, RSR and MSI) in LAI estimation was tested for the same stands. Ground-truth LAI was based on an allometric model which can be applied to routine stand inventory data. Stand reflectances were computed as an average of reflectances of the pixels located within the digital stand borders.The relationships of LAI and spectral vegetation indices calculated from the SPOT data were very scattered. RSR exhibited the widest range of values (and the highest correlation with LAI), suggesting it to be more dynamic than MSI or NDVI. Inversion of the reflectance model was done twice: first using as simultaneous input three wavelength bands (red, NIR and MIR), then only the red and NIR bands. The aim was to observe whether including the MIR band in the inversion would improve the inverted LAI estimates or if using only the red and NIR bands would result in the same reliability of inverted values. The motivation for examining the influence of the MIR band resulted from several recent studies from the boreal zone which suggest that the pronounced understory effect could be minimized by the inclusion of the MIR band. The LAI values inverted by the model were slightly larger than the ground-truth LAI values. A minor improvement in LAI estimates was observed after the inclusion of the MIR band in reflectance model inversion. The errors in the ground-truth LAI were uncertain and the background understory reflectance was expected to be highly variable. Thus, the quality of the data used may be to a large extent responsible for the observed low utility of the tested channels.  相似文献   

9.
Climate change is predicted to alter the canopy phenology of temperate and boreal forests, which will affect carbon, water, and energy budgets. Therefore, there is a great need to evaluate remotely sensed products for their potential to accurately capture canopy dynamics. The objective of this study was to compare several products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) to field measurements of fraction photosynthetically active radiation (FPAR) and plant area index (PAI) for a deciduous broadleaf forest in northern Wisconsin in 2002. MODIS products captured the general phenological development of the canopy although MODIS products overestimated the leaf area during the overstory leaf out period. Field data suggest that the period from budburst to canopy maturity, or maximum PAI, occurred in 10 to 12 days while MODIS products predicted onset of greenness and maturity from 1 to 21 days and 0 to 19 days earlier than that from field observations, respectively. Temporal compositing of MODIS data and understory development are likely key factors explaining differences with field data. Maximum PAI estimates differed only by 7% between field derived and MODIS-based estimates of LAI. Implications for ecosystem modeling of carbon and water exchange and future research needs are discussed.  相似文献   

10.
Information on vegetation status can be retrieved from satellite observations by modelling and inverting canopy radiative transfer. Agricultural monitoring and yield forecasting could greatly benefit from such techniques by coupling crop growth models with crop specific information through data assimilation. An indicator which would be particularly interesting to obtain from remote sensing is the total surface of photosynthetically active plant tissue, or green area index (GAI). Currently, the major limitation is that the imagery that can be used operationally and economically over large areas with high temporal frequency has a coarse spatial resolution. This paper demonstrates how it is possible to characterise the regional crop specific GAI range along with its temporal dynamic using MODIS imagery by controlling the degree at which the observation footprints of the coarse pixels fall within the crop-specific mask delineating the target. This control is done by modelling the instrument's point spread function and by filtering out less reliable GAI estimations in both the spatial and temporal dimensions using thresholds on 3 variables: pixel purity, observation coverage and view zenith angle. The difference in performance between MODIS and fine spatial resolution to estimate the median GAI of a given crop over a 40 × 40 km study region can be reduced to a RMSE of 0.053 m2/m2. The consistency between fine and coarse spatial resolution GAI estimations suggests a possible instrument synergy whereby the high temporal resolution of MODIS provides the general GAI trajectory and while high spatial resolution can be used to estimate the local GAI spatial heterogeneity.  相似文献   

11.
Leaf area index (LAI) collected in a needle-leaf forest site near Ruokolahti, Finland, during a field campaign in June 14-21, 2000, was used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) LAI algorithm. The field LAI data was first related to 30-m resolution Enhanced Thermal Mapper Plus (ETM+) images using empirical methods to create a high-resolution LAI map. The analysis of empirical approaches indicates that preliminary segmentation of the image followed by empirical modeling with the resulting patches, was an effective approach to developing an LAI validation surface. Comparison of the aggregated high-resolution LAI map and corresponding MODIS LAI retrievals suggests satisfactory behavior of the MODIS LAI algorithm although variation in MODIS LAI product is higher than expected. The MODIS algorithm, adjusted to high resolution, generally overestimates the LAI due to the influence of the understory vegetation. This indicates the need for improvements in the algorithm. An improved correlation between field measurements and the reduced simple ratio (RSR) suggests that the shortwave infrared (SWIR) band may provide valuable information for needle-leaf forests.  相似文献   

12.
Leaf area index (LAI) is an important surface biophysical parameter as a measure of vegetation cover, vegetation productivity, and as an input to ecosystem process models. Recently, a number of coarse-scale (1-km) LAI maps have been generated over large regions including the Canadian boreal forest. This study focuses on the production of fine-scale (≤30-m) LAI maps using the forest light interaction model-clustering (FLIM-CLUS) algorithm over selected boreal conifer stands and the subsequent comparison of the fine-scale maps to coarse-scale LAI maps synthesized from Landsat TM imagery. The fine-scale estimates are validated using surface LAI measurements to give relative root mean square errors of under 7% for jack pine sites and under 14% for black spruce sites. In contrast, finer scale site mean LAI ranges between 49% and 86% of the mean of surface estimates covering only part of the sites and 54% to 110% of coarse-scale site mean LAI. Correlations between fine-scale and coarse-scale estimates range from near 0.5 for 30-m coarse-scale images to under 0.3 to 1-km coarse-scale images but increase to near 0.90 after imposing fine-scale zero LAI areas in coarse-scale estimates. The increase suggests that coarse-scale image-based LAI estimates require consideration of sub-pixel open areas. Both FLIM-CLUS and coarse-scale site mean LAI are substantially lower than surface estimates over northern sites. The assumption of spatially random residuals in regression-based estimates of LAI may not be valid and may therefore add to local bias errors in estimating LAI remotely. Differences between fine-scale airborne LAI maps and 30-m-scale Landsat TM LAI maps suggests that, for sparse boreal conifer stands, LAI maps produced from Landsat TM alone may not always be sufficient for validation of coarser scale LAI maps. In addition, previous studies may have used biased LAI estimates over the study site. Fine-scale spatial LAI maps offer one means of assessing and correcting for effects of sub-pixel open area patches and for characterising the spatial pattern of residuals in coarse-scale LAI estimates in comparison to the true distribution of LAI on the surface.  相似文献   

13.
This paper reports on the use of linear spectral mixture analysis for the retrieval of canopy leaf area index (LAI) in three flux tower sites in the Boreal Ecosystem-Atmosphere Study (BOREAS) southern study area: Old Black Spruce, Old Jack Pine, and Young Jack Pine (SOBS, SOJP, and SYJP). The data used were obtained by the Compact Airborne Spectrographic Imager (CASI) with a spatial resolution of 2 m in the winter of 1994. The convex geometry method was used to select the endmembers: sunlit crown, sunlit snow, and shadow. Along transects for these flux tower sites, the fraction of sunlit snow was found to have a higher correlation with the field-measured canopy LAI than the fraction of sunlit crown or the fraction of shadow. An empirical equation was obtained to describe the relation between canopy LAI and the fraction of sunlit snow. There is a strong correlation between the estimated LAI and the field-measured LAI along transects (with R2 values of 0.54, 0.71, and 0.60 obtained for the SOBS, SYJP, and SOJP sites, respectively). The estimated LAI for the whole tower site is consistent with that obtained by the inversion of a canopy model in our previous study where values of 0.94, 0.92, and 0.63 were obtained for R2 for the SOBS, SYJP and SOJP sites, respectively.The CASI 2-m summer data over the SOBS site was also employed to investigate the possibility of deriving canopy LAI from the summer data using linear mixture analysis. At a spatial resolution of 10 m, the correlation between the field-measured LAI and the estimated LAI along transects is small at R2 less than 0.3, while R2 increases to 0.6 at a spatial resolution of 30 m. The difficulty in canopy LAI retrieval from the summer data at a spatial resolution of 10 m is likely due to the variation of the understory reflectance across the scene, although spatial misregistration of the CASI data used may also be a possible contributing factor.  相似文献   

14.
The objective of this study is to evaluate whether the retrieval of the leaf chlorophyll content and leaf area index (LAI) for precision agriculture application from hyperspectral data is significantly affected by data compression. This analysis was carried out using the hyperspectral data sets acquired by Compact Airborne Spectrographic Imager (CASI) over corn fields at L'Acadie experimental farm (Agriculture and Agri-Food Canada) during the summer of 2000 and over corn, soybean and wheat fields at the former Greenbelt farm (Agriculture and Agri-Food Canada) in three intensive field campaigns during the summer of 2001. Leaf chlorophyll content and LAI were retrieved from the original data and the reconstructed data compressed/decompressed by the compression algorithm called Successive approximation multi-stage vector quantization (SAMVQ) at compression ratios of 20:1, 30:1, and 50:1. The retrieved products were evaluated against the ground-truth.In the retrieval of leaf chlorophyll content (the first data set), the spatial patterns were examined in all of the images created from the original and reconstructed data and were proven to be visually unchanged, as expected. The data measures R2, absolute RMSE, and relative RMSE between the leaf chlorophyll content derived from the original and reconstructed data cubes, and the laboratory-measured values were calculated as well. The results show the retrieval accuracy of crop chlorophyll content is not significantly affected by SAMVQ at the compression ratios of 20:1, 30:1, and 50:1, relative to the observed uncertainties in ground truth values. In the retrieval of LAI (the second data set), qualitative and quantitative analyses were performed. The results show that the spatial and temporal patterns of the LAI images are not significantly affected by SAMVQ and the retrieval accuracies measured by the R2, absolute RMSE, and relative RMSE between the ground-measured LAI and the estimated LAI are not significantly affected by the data compression either.  相似文献   

15.
An active-fire based burned area mapping algorithm for the MODIS sensor   总被引:4,自引:0,他引:4  
We present an automated method for mapping burned areas using 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) imagery coupled with 1-km MODIS active fire observations. The algorithm applies dynamic thresholds to composite imagery generated from a burn-sensitive vegetation index and a measure of temporal texture. Cumulative active fire maps are used to guide the selection of burned and unburned training samples. An accuracy assessment for three geographically diverse regions (central Siberia, the western United States, and southern Africa) was performed using high resolution burned area maps derived from Landsat imagery. Mapped burned areas were accurate to within approximately 10% in all regions except the high-tree-cover sub-region of southern Africa, where the MODIS burn maps underestimated the area burned by 41%. We estimate the minimum detectable burn size for reliable detection by our algorithm to be on the order of 120 ha.  相似文献   

16.
Leaf area index (LAI) is an important structural property of vegetation canopy and is also one of the basic quantities driving the algorithms used in regional and global biogeochemical, ecological and meteorological applications. LAI can be estimated from remotely sensed data through the vegetation indices (VI) and the inversion of a canopy radiative transfer (RT) model. In recent years, applications of the genetic algorithms (GA) to a variety of optimization problems in remote sensing have been successfully demonstrated. In this study, we estimated LAI by integrating a canopy RT model and the GA optimization technique. This method was used to retrieve LAI from field measured reflectance as well as from atmospherically corrected Landsat ETM+ data. Four different ETM+ band combinations were tested to evaluate their effectiveness. The impacts of using the number of the genes were also examined. The results were very promising compared with field measured LAI data, and the best results were obtained with three genes in which the R2 is 0.776 and the root-mean-square error (RMSE) 1.064.  相似文献   

17.
The leaf area index (LAI) product from the Moderate Resolution Imaging Spectroradiometer (MODIS) is important for monitoring and modelling global change and terrestrial dynamics at many scales. The algorithm relies on spectral reflectances and a six biome land cover classification. Evaluation of the specific behaviour and performance of the product for regions of the globe such as Australia are needed to assist with product refinement and validation. We made an assessment of Collection 4 of the MODIS LAI product using four approaches: (a) assessment against a continental scale Structural Classification of Australian Vegetation (SCAV); (b) assessment against a continental scale land use classification (LUC); (c) assessment against historical field-based measurement of LAI collected prior to the Terra Mission; and (d) direct comparison of MODIS LAI with coincident field measurements of LAI, mostly from hemispherical photography. The MODIS LAI product produced a wide variety of geographically and structurally specific temporal response profiles between different classes and even for sub-groups within classes of the SCAV. Historical and concurrent field measurements indicated that MODIS LAI was giving reasonable estimates for LAI for most cover types and land use types, but that major overestimation of LAI occurs in some eastern Australian open forests and woodlands. The six biome structural land cover classification showed some significant deviations in class allocation compared to the SCAV particularly where grasslands are allocated to shrubland, savanna woodlands are allocated to shrubland, savanna and broadleaf forest, and open forests are allocated to savanna and broadleaf forest. The land cover and LAI products could benefit from some additional examination of Australian data addressing the structural representation of Eucalypt canopies in the “space of canopy realisation” for savanna and broadleaf forest classes.  相似文献   

18.
On the relationship of NDVI with leaf area index in a deciduous forest site   总被引:7,自引:0,他引:7  
Numerous studies have reported on the relationship between the normalized difference vegetation index (NDVI) and leaf area index (LAI), but the seasonal and annual variability of this relationship has been less explored. This paper reports a study of the NDVI-LAI relationship through the years from 1996 to 2001 at a deciduous forest site. Six years of LAI patterns from the forest were estimated using a radiative transfer model with input of above and below canopy measurements of global radiation, while NDVI data sets were retrieved from composite NDVI time series of various remote sensing sources, namely NOAA Advanced Very High Resolution Radiometer (AVHRR; 1996, 1997, 1998 and 2000), SPOT VEGETATION (1998-2001), and Terra MODIS (2001). Composite NDVI was first used to remove the residual noise based on an adjusted Fourier transform and to obtain the NDVI time-series for each day during each year.The results suggest that the NDVI-LAI relationship can vary both seasonally and inter-annually in tune with the variations in phenological development of the trees and in response to temporal variations of environmental conditions. Strong linear relationships are obtained during the leaf production and leaf senescence periods for all years, but the relationship is poor during periods of maximum LAI, apparently due to the saturation of NDVI at high values of LAI. The NDVI-LAI relationship was found to be poor (R2 varied from 0.39 to 0.46 for different sources of NDVI) when all the data were pooled across the years, apparently due to different leaf area development patterns in the different years. The relationship is also affected by background NDVI, but this could be minimized by applying relative NDVI.Comparisons between AVHRR and VEGETATION NDVI revealed that these two had good linear relationships (R2=0.74 for 1998 and 0.63 for 2000). However, VEGETATION NDVI data series had some unreasonably high values during beginning and end of each year period, which must be discarded before adjusted Fourier transform processing. MODIS NDVI had values greater than 0.62 through the entire year in 2001, however, MODIS NDVI still showed an “M-shaped” pattern as observed for VEGETATION NDVI in 2001. MODIS enhanced vegetation index (EVI) was the only index that exhibited a poor linear relationship with LAI during the leaf senescence period in year 2001. The results suggest that a relationship established between the LAI and NDVI in a particular year may not be applicable in other years, so attention must be paid to the temporal scale when applying NDVI-LAI relationships.  相似文献   

19.
Microwave-based remote sensing algorithms for mapping soil moisture are sensitive to water contained in surface vegetation at moderate levels of canopy cover. Correction schemes require spatially distributed estimates of vegetation water content at scales comparable to that of the microwave sensor footprint (101 to 104 m). This study compares the relative utility of high-resolution (1.5 m) aircraft and coarser-resolution (30 m) Landsat imagery in upscaling an extensive set of ground-based measurements of canopy biophysical properties collected during the Soil Moisture Experiment of 2002 (SMEX02) within the Walnut Creek Watershed. The upscaling was accomplished using expolinear relationships developed between spectral vegetation indices and measurements of leaf area index, canopy height, and vegetation water content. Of the various indices examined, a Normalized Difference Water Index (NDWI), derived from near- and shortwave-infrared reflectances, was found to be least susceptible to saturation at high levels of leaf area index. With the aircraft data set, which did not include a short-wave infrared water absorption band, the Optimized Soil Adjusted Vegetation Index (OSAVI) yielded best correlations with observations and highest saturation levels. At the observation scale (10 m), LAI was retrieved from both NDWI and OSAVI imagery with an accuracy of 0.6, vegetation water content at 0.7 kg m−2, and canopy height to within 0.2 m. Both indices were used to estimate field-scale mean canopy properties and variability for each of the intensive soil-moisture-sampling sites within the watershed study area. Results regarding scale invariance over the SMEX02 study area in transformations from band reflectance and vegetation indices to canopy biophysical properties are also presented.  相似文献   

20.
Reflectance data in the green, red and near-infrared wavelength region were acquired by the SPOT high resolution visible and geometric imaging instruments for an agricultural area in Denmark (56°N, 9°E) for the purpose of estimating leaf chlorophyll content (Cab) and green leaf area index (LAI). SPOT reflectance observations were atmospherically corrected using aerosol data from MODIS and profiles of air temperature, humidity and ozone from the Atmospheric Infrared Sounder (AIRS), and used as input for the inversion of a canopy reflectance model. Computationally efficient inversion schemes were developed for the retrieval of soil and land cover-specific parameters which were used to build multiple species and site dependent formulations relating the two biophysical properties of interest to vegetation indices or single spectral band reflectances. Subsequently, the family of model generated relationships, each a function of soil background and canopy characteristics, was employed for a fast pixel-wise mapping of Cab and LAI.The biophysical parameter retrieval scheme is completely automated and image-based and solves for the soil background reflectance signal, leaf mesophyll structure, specific dry matter content, Markov clumping characteristics, Cab and LAI without utilizing calibration measurements.Despite the high vulnerability of near-infrared reflectances (ρnir) to variations in background properties, an efficient correction for background influences and a strong sensitivity of ρnir to LAI, caused LAI-ρnir relationships to be very useful and preferable over LAI-NDVI relationships for LAI prediction when LAI > 2. Reflectances in the green waveband (ρgreen) were chosen for producing maps of Cab.The application of LAI-NDVI, LAI-ρnir and Cab-ρgreen relationships provided reliable quantitative estimates of Cab and LAI for agricultural crops characterized by contrasting architectures and leaf biochemical constituents with overall root mean square deviations between estimates and in-situ measurements of 0.74 for LAI and 5.0 μg cm− 2 for Cab.The results of this study illustrate the non-uniqueness of spectral reflectance relationships and the potential of physically-based inverse and forward canopy reflectance modeling techniques for a reasonably fast and accurate retrieval of key biophysical parameters at regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号