首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The sensitivity of TerraSAR-X radar signals to surface soil parameters has been examined over agricultural fields, using HH polarization and various incidence angles (26°, 28°, 50°, 52°). The results show that the radar signal is slightly more sensitive to surface roughness at high incidence (50°–52°) than at low incidence (26°–28°). The difference observed in the X-band, between radar signals reflected by the roughest and smoothest areas, reaches a maximum of the order of 5.5 dB at 50°–52°, and 4 dB at 26°–28°. This sensitivity increases in the L-band with PALSAR/ALOS data, for which the dynamics of the return radar signal as a function of soil roughness reach 8 dB at HH38°. In the C-band, ASAR/ENVISAT data (HH and VV polarizations at an incidence angle of 23°) are characterised by a difference of about 4 dB between the signals backscattered by smooth and rough areas.Our results also show that the sensitivity of TerraSAR-X signal to surface roughness decreases in very wet and frozen soil conditions. Moreover, the difference in backscattered signal between smooth and rough fields is greater at high incidence angles. The low-to-high incidence signal ratio (Δσ° = σ26°–28°/σ50°–52°) decreases with surface roughness, and has a dynamic range, as a function of surface roughness, smaller than that of the backscattering coefficients at low and high incidences alone. Under very wet soil conditions (for soil moistures between 32% and 41%), the radar signal decreases by about 4 dB. This decrease appears to be independent of incidence angle, and the ratio Δσ° is found to be independent of soil moisture.  相似文献   

2.
The Integral Equation Model (IEM) is the most widely-used, physically based radar backscatter model for sparsely vegetated landscapes. In general, IEM quantifies the magnitude of backscattering as a function of moisture content and surface roughness, which are unknown, and the known radar configurations. Estimating surface roughness or soil moisture by solving the IEM with two unknowns is a classic example of under-determination and is at the core of the problems associated with the use of radar imagery coupled with IEM-like models. This study offers a solution strategy to this problem by the use of multi-angle radar images, and thus provides estimates of roughness and soil moisture without the use of ancillary field data. Results showed that radar images can provide estimates of surface soil moisture at the watershed scale with good accuracy. Results at the field scale were less accurate, likely due to the influence of image speckle. Results also showed that subsurface roughness caused by rock fragments in the study sites caused error in conventional applications of IEM based on field measurements, but was minimized by using the multi-angle approach.  相似文献   

3.
This research investigates the appropriate scale for watershed averaged and site specific soil moisture retrieval from high resolution radar imagery. The first approach involved filtering backscatter for input to a retrieval model that was compared against field measures of soil moisture. The second approach involved spatially averaging raw and filtered imagery in an image-based statistical technique to determine the best scale for site-specific soil moisture retrieval. Field soil moisture was measured at 1225 m2 sites in three watersheds commensurate with 7 m resolution Radarsat image acquisition. Analysis of speckle reducing block median filters indicated that 5 × 5 filter level was the optimum for watershed averaged estimates of soil moisture. However, median filtering alone did not provide acceptable accuracy for soil moisture retrieval on a site-specific basis. Therefore, spatial averaging of unfiltered and median filtered power values was used to generate backscatter estimates with known confidence for soil moisture retrieval. This combined approach of filtering and averaging was demonstrated at watersheds located in Arizona (AZ), Oklahoma (OK) and Georgia (GA). The optimum ground resolution for AZ, OK and GA study areas was 162 m, 310 m, and 1131 m respectively obtained with unfiltered imagery. This statistical approach does not rely on ground verification of soil moisture for validation and only requires a satellite image and average roughness parameters of the site. When applied at other locations, the resulting optimum ground resolution will depend on the spatial distribution of land surface features that affect radar backscatter. This work offers insight into the accuracy of soil moisture retrieval, and an operational approach to determine the optimal spatial resolution for the required application accuracy.  相似文献   

4.
Evaluation of air- or space-borne remote sensors measuring soil moisture requires strategic ground-based sampling. As part of the Soil Moisture Experiment 2002 (SMEX02), daily surface soil moisture sampling at 90-140 locations were conducted in four fields in Walnut Creek watershed, Iowa. Various combinations of soils, vegetation, and topography characterize the fields. Depending on the field's characteristics and soil moisture content, 3-32 independent measurements were necessary to capture the field mean volumetric soil moisture with a ±2% bias and 95% confidence interval. Validation of the retrieved soil moisture products from the aircraft microwave instruments using the average of 14 samples per field is more appropriate for dry (<10% volumetric soil moisture) or wet (>25% volumetric soil moisture) range than for intermediate soil moisture range. Time stability analysis showed that an appropriately selected single sampling point could provide similar accuracy across a range of soil moisture conditions. Analyses based on landscape position (depression, hilltop, steep slope, and mild slope) showed that locations with mild slopes consistently exhibit time stable features. Hilltop and steep slope locations consistently underestimated mean field soil moisture. Soils parameters could not be used to identify time stable features as sampling locations with relatively high sand content consistently underestimated the field mean while those locations with relatively high clay content consistently overestimated the field mean. However, the slope position characterization of time stable features was enhanced using soils properties. The mild slope locations having the best time-stable features are those with moderate to moderately high clay content as compare to the field average (28-30% clay).  相似文献   

5.
Accurate high-resolution soil moisture data are needed for a range of agricultural and hydrologic activities. To improve the spatial resolution of ∼ 40 km resolution passive microwave-derived soil moisture, a methodology based on 1 km resolution MODIS (MODerate resolution Imaging Spectroradiometer) red, near-infrared and thermal-infrared data has been implemented at 4 km resolution. The three components of that method are (i) fractional vegetation cover, (ii) soil evaporative efficiency (defined as the ratio of actual to potential evaporation) and (iii) a downscaling relationship. In this paper, 36 different disaggregation algorithms are built from 3 fractional vegetation cover formulations, 3 soil evaporative efficiency models, and 4 downscaling relationships. All algorithms differ with regard to the representation of the nonlinear relationship between microwave-derived soil moisture and optical-derived soil evaporative efficiency. Airborne L-band data collected over an Australian agricultural area are used to both generate ∼ 40 km resolution microwave pixels and verify disaggregation results at 4 km resolution. Among the 36 disaggregation algorithms, one is identified as being more robust (insensitive to soil, vegetation and atmospheric variables) than the others with a mean slope between MODIS-disaggregated and L-band derived soil moisture of 0.94. The robustness of that algorithm is notably assessed by comparing the disaggregation results obtained using composited (averaged) Terra and Aqua MODIS data, and using data from Terra and Aqua separately. The error on disaggregated soil moisture is systematically reduced by compositing daily Terra and Aqua data with an error of 0.012 vol./vol.  相似文献   

6.
An operational global soil moisture data product is currently generated from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) aboard NASA's Aqua satellite using the retrieval procedure described in Njoku and Chan [Njoku, E.G. and Chan, S.K., 2006. Vegetation and surface roughness effects on AMSR-E land observations, remote sensing environment, 100(2), 190-199]. We have generated another soil moisture dataset from the same AMSR-E observed brightness temperature data using the Land Surface Microwave Emission Model (LSMEM) adopting a different estimation method. This paper focuses on a comparison study of soil moisture estimates from the above two methods. The soil moisture data from current AMSR-E product and LSMEM are compared with the in-situ measured soil moisture datasets over the Little River Experimental Watershed (LREW), Georgia, USA for the year 2003. The comparison study was carried out separately for the AMSR-E daytime and night time overpasses. The LSMEM method performed better than the current operational AMSR-E retrieval algorithm in this study. The differences between the AMSR-E and LSMEM results are mostly due to differences in various simplifications and assumptions made for variables in the radiative transfer equations and the soil and vegetation based physical models and the accuracy of the input surface temperature datasets for the LSMEM forward model approach. This study confirms that remote sensing data have the potential to provide useful hydrologic information, but the accuracy of the geophysical parameters could vary depending on the estimation methods. It cannot be concluded from this study whether the soil moisture estimation by the LSMEM approach will perform better in other geographic, climatic or topographic conditions. Nevertheless, this study sheds light on the effects of different approaches for the estimation of geophysical parameters, which may be useful for current and future satellite missions.  相似文献   

7.
A new index was proposed to estimate soil and vegetation moisture based on NIR (858 nm) and SWIR (1240 and 1640 nm) MODIS bands. The Shortwave Angle Slope Index (SASI) parameterizes the general shape of the NIR-SWIR part of the spectrum. We expand on the novel approach used to develop SASI by proposing another index, the Angle at NIR (ANIR). We use laboratory and simulation datasets to validate the ability of SASI to estimate soil and vegetation moisture, and evaluate the advantage for using both SASI and ANIR as land-cover discrimination tools. Our results demonstrate that SASI is a good indicator of soil and vegetation moisture. ANIR shows promise in discriminating dry plant matter from soil and quantifying the amount of dry matter irrespective of changes in soil moisture or green vegetation. When SASI is combined with ANIR, discrimination between soil, dry plant matter, and low to high amounts of green vegetation is significantly improved. Angle indexes are an exciting new way to engineer indexes that contain valuable environmental information not accessible from other indexes.  相似文献   

8.
Near-surface soil moisture is a critical component of land surface energy and water balance studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the difficulty in accurately representing soil texture and hydraulic properties in land surface models. This study approaches the problem of parameterizing soil properties from a unique perspective based on components originally developed for operational estimation of soil moisture for mobility assessments. Estimates of near-surface soil moisture derived from passive (L-band) microwave remote sensing were acquired on six dates during the Monsoon '90 experiment in southeastern Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer information on the soil conditions of the region. Specifically, a robust parameter estimation tool (PEST) was used to calibrate the Noah land surface model and run at very high spatial resolution across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic properties through the use of pedotransfer functions. By estimating within a continuous range of widely applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy and consistency of the resulting soils could then be assessed.In addition, the sensitivity of this calibration method to the number and timing of microwave retrievals is determined in relation to the temporal patterns in precipitation and soil drying. The resultant soil properties were applied to an extended time period demonstrating the improvement in simulated soil moisture over that using default or county-level soil parameters. The methodology is also applied to an independent case at Walnut Gulch using a new soil moisture product from active (C-band) radar imagery with much lower spatial and temporal resolution. Overall, results demonstrate the potential to gain physically meaningful soil information using simple parameter estimation with few but appropriately timed remote sensing retrievals.  相似文献   

9.
The Soil Moisture and Ocean Salinity (SMOS) satellite mission, based on an aperture synthesis L-band radiometer was successfully launched in November 2009. In the context of a validation campaign for the SMOS mission, intensive airborne and in situ observations were performed in southwestern France for the SMOS CAL/VAL, from April to May 2009 and from April to July 2010. The CAROLS (Cooperative Airborne Radiometer for Ocean and Land Studies) bi-angular (34°-0°) and dual-polarized (V and H) L-band radiometer was designed, built and installed on board the French ATR-42 research aircraft. During springs of 2009 and 2010, soil moisture observations from the SMOSMANIA (Soil Moisture Observing System-Meteorological Automatic Network Integrated Application) network of Météo-France were complemented by airborne observations of the CAROLS L-band radiometer, following an Atlantic-Mediterranean transect in southwestern France. Additionally to the 12 stations of the SMOSMANIA soil moisture network, in situ measurements were collected in three specific sites within an area representative of a SMOS pixel. Microwave radiometer observations, acquired over southwestern France by the CAROLS instrument were analyzed in order to assess their sensitivity to surface soil moisture (wg). A combination of microwave brightness temperature (Tb) at either two polarizations or two contrasting incidence angles was used to retrieve wg through regressed empirical logarithmic equations with good results, depending on the chosen configuration. The regressions derived from the CAROLS measurements were applied to the SMOS Tb and their retrieval performance was evaluated. The retrievals of wg showed significant correlation (p-value < 0.05) with surface measurements for most of the SMOSMANIA stations (8 of 12 stations) and with additional field measurements at two specific sites, also. Root mean square errors varied from 0.03 to 0.09 m3 m− 3 (0.06 m3 m− 3 on average).  相似文献   

10.
This paper presents an original methodology to retrieve surface (<5 cm) soil moisture over low vegetated regions using the two active microwave instruments of ERS satellites. The developed algorithm takes advantage of the multi-angular configuration and high temporal resolution of the Wind Scatterometer (WSC) combined with the SAR high spatial resolution. As a result, a mixed target model is proposed. The WSC backscattered signal may be represented as a combination of the vegetation and bare soil contributions weighted by their respective fractional covers. Over our temperate regions and time periods of interest, the vegetation signal is assumed to be principally due to forests backscattered signal. Then, thanks to the high spatial resolution of the SAR instrument, the forest contribution may be quantified from the analysis of the SAR image, and then removed from the total WSC signal in order to estimate the soil contribution. Finally, the Integral Equation Model (IEM, [IEEE Transactions on Geoscience and Remote Sensing, 30 (2), (1992) 356]) is used to estimate the effect of surface roughness and to retrieve surface soil moisture from the WSC multi-angular measurements. This methodology has been developed and applied on ERS data acquired over three different Seine river watersheds in France, and for a 3-year time period. The soil moisture estimations are compared with in situ ground measurements. High correlations (R2 greater than 0.8) are observed for the three study watersheds with a root mean square (rms) error smaller than 4%.  相似文献   

11.
要 :本公司研制的SOILTOP-200土壤水分测定仪区别于国内外FDR和其它 TDR技术同类产品,采用频域频率步进体系,应用连续波在频域进行测试,通过傅立叶逆变换转换到时间域,反演得到平行传输线周围土壤的介电常数,从而推算得到土壤体积含水率。通过对安徽潮土、江西红壤、东北黑土等多种不同土壤的实验室测量,以及天津市静海县、河南省、吉林省等多地域不同土样的田间测量与人工法数据的比对证实,SOILTOP-200在未经率定的前提下,具有极高的通用性、准确性和稳定性,实验室测量误差均低于 2%,野外测量误差也基本达到 2%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号