首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Sustainable rangeland stewardship calls for synoptic estimates of rangeland biomass quantity (kg dry matter ha− 1) and quality [carbon:nitrogen (C:N) ratio]. These data are needed to support estimates of rangeland crude protein in forage, either by percent (CPc) or by mass (CPm). Biomass derived from remote sensing data is often compromised by the presence of both photosynthetically active (PV) and non-photosynthetically active (NPV) vegetation. Here, we explicitly quantify PV and NPV biomass using HyMap hyperspectral imagery. Biomass quality, defined as plant C:N ratio, was also estimated using a previously published algorithm. These independent algorithms for forage quantity and quality (both PV and NPV) were evaluated in two northern mixed-grass prairie ecoregions, one in the Northwestern Glaciated Plains (NGGP) and one in the Northwestern Great Plains (NGP). Total biomass (kg ha− 1) and C:N ratios were mapped with 18% and 8% relative error, respectively. Outputs from both models were combined to quantify crude protein (kg ha− 1) on a pasture scale. Results suggest synoptic maps of rangeland vegetation mass (both PV and NPV) and quality may be derived from hyperspectral aerial imagery with greater than 80% accuracy.  相似文献   

2.
Air temperature can be estimated from remote sensing by combining information in thermal infrared and optical wavelengths. The empirical TVX algorithm is based on an estimated linear relationship between observed Land Surface Temperature (LST) and a Spectral Vegetation Index (NDVI). Air temperature is assumed to be equal to the LST corresponding to the effective full vegetation cover, and is found by extrapolating the line to a maximum value of NDVImax. The algorithm has been tested and reported in the literature previously. However, the effect of vegetation types and climates and the potential variation in NDVI of the effective full cover has not been subject for investigation. The present study proposes a novel methodology to estimate NDVImax that uses observed air temperature to calibrate the NDVImax for each vegetation type. To assess the validity of this methodology, we have compared the accuracy of estimates using the new NDVImax and the previous NDVImax that have been proposed in literature with MSG-SEVIRI images in Spain during the year 2005. In addition, a spatio-temporal assessment of residuals has been performed to evaluate the accuracy of retrievals in terms of daily and seasonal variation, land cover, landscape heterogeneity and topography. Results showed that the new calibrated NDVImax perform well, with a Mean Absolute Error ranging between 2.8 °C and 4 °C. In addition, vegetation-specific NDVImax improve the accuracy compared with a unique NDVImax.  相似文献   

3.
Accurate estimation of live and dead biomass in forested ecosystems is important for studies of carbon dynamics, biodiversity, wildfire behavior, and for forest management. Lidar remote sensing has been used successfully to estimate live biomass, but studies focusing on dead biomass are rare. We used lidar data, in conjunction with field measurements from 58 plots to distinguish between and map standing live and dead tree biomass in the mixed coniferous forest of the North Rim of Grand Canyon National Park, USA. Lidar intensity and canopy volume were key variables for estimating live biomass, whereas for dead biomass, lidar intensity alone was critical for accurate estimation. Regression estimates of both live and dead biomass ranged between 0 and 600 Mg ha− 1, with means of 195.08 Mg ha− 1 and 65.73 Mg ha− 1, respectively. Cross validation with field data resulted in correlation coefficients for predicted vs. observed of 0.85 for live biomass (RMSE = 50 Mg ha− 1 and %RMSE (RMSE as a percent of the mean) = 26). For dead biomass, correlation was 0.79, RMSE was 42 Mg ha− 1, and %RMSE was 63. Biomass maps revealed interesting patterns of live and dead standing tree biomass. Live biomass was highest in the ponderosa pine zone, and decreased from south to north through the mixed conifer and spruce-fir forest zones. Dead biomass exhibited a background range of values in these mature forests from zero to 100 Mg ha− 1, with lower values in locations having higher live biomass. In areas with high dead biomass values, live biomass was near zero. These areas were associated with recent wildfires, as indicated by fire maps derived from the Monitoring Trends in Burn Severity Project (MTBS). Combining our dead biomass maps with the MTBS maps, we demonstrated the complementary power of these two datasets, revealing that MTBS burn intensity class can be described quantitatively in terms of dead biomass. Assuming a background range of dead biomass up to 100 Mg ha− 1, it is possible to estimate and map the contribution to the standing dead tree biomass pool associated with recent wildfire.  相似文献   

4.
Greenhouse gas inventories and emissions reduction programs require robust methods to quantify carbon sequestration in forests. We compare forest carbon estimates from Light Detection and Ranging (Lidar) data and QuickBird high-resolution satellite images, calibrated and validated by field measurements of individual trees. We conducted the tests at two sites in California: (1) 59 km2 of secondary and old-growth coast redwood (Sequoia sempervirens) forest (Garcia-Mailliard area) and (2) 58 km2 of old-growth Sierra Nevada forest (North Yuba area). Regression of aboveground live tree carbon density, calculated from field measurements, against Lidar height metrics and against QuickBird-derived tree crown diameter generated equations of carbon density as a function of the remote sensing parameters. Employing Monte Carlo methods, we quantified uncertainties of forest carbon estimates from uncertainties in field measurements, remote sensing accuracy, biomass regression equations, and spatial autocorrelation. Validation of QuickBird crown diameters against field measurements of the same trees showed significant correlation (r = 0.82, P < 0.05). Comparison of stand-level Lidar height metrics with field-derived Lorey's mean height showed significant correlation (Garcia-Mailliard r = 0.94, P < 0.0001; North Yuba R = 0.89, P < 0.0001). Field measurements of five aboveground carbon pools (live trees, dead trees, shrubs, coarse woody debris, and litter) yielded aboveground carbon densities (mean ± standard error without Monte Carlo) as high as 320 ± 35 Mg ha− 1 (old-growth coast redwood) and 510 ± 120 Mg ha− 1 (red fir [Abies magnifica] forest), as great or greater than tropical rainforest. Lidar and QuickBird detected aboveground carbon in live trees, 70-97% of the total. Large sample sizes in the Monte Carlo analyses of remote sensing data generated low estimates of uncertainty. Lidar showed lower uncertainty and higher accuracy than QuickBird, due to high correlation of biomass to height and undercounting of trees by the crown detection algorithm. Lidar achieved uncertainties of < 1%, providing estimates of aboveground live tree carbon density (mean ± 95% confidence interval with Monte Carlo) of 82 ± 0.7 Mg ha− 1 in Garcia-Mailliard and 140 ± 0.9 Mg ha− 1 in North Yuba. The method that we tested, combining field measurements, Lidar, and Monte Carlo, can produce robust wall-to-wall spatial data on forest carbon.  相似文献   

5.
Satellite L-band synthetic aperture radar backscatter data from 1996 and 2007 (from JERS-1 and ALOS PALSAR respectively), were used with field data collected in 2007 and a back-calibration method to produce biomass maps of a 15 000 km2 forest-savanna ecotone region of central Cameroon. The relationship between the radar backscatter and aboveground biomass (AGB) was strong (r2 = 0.86 for ALOS HV to biomass plots, r2 = 0.95 relating ALOS-derived biomass for 40 suspected unchanged regions to JERS-1 HH). The root mean square error (RMSE) associated with AGB estimation varied from ~ 25% for AGB < 100 Mg ha− 1 to ~ 40% for AGB > 100 Mg ha− 1 for the ALOS HV data. Change detection showed a significant loss of AGB over high biomass forests, due to suspected deforestation and degradation, and significant biomass gains along the forest-savanna boundary, particularly in areas of low population density. Analysis of the errors involved showed that radar data can detect changes in broad AGB class in forest-savanna transition areas with an accuracy > 95%. However, quantitative assessment of changes in AGB in Mg ha− 1 at a pixel level will require radar images from sensors with similar characteristics collecting data from the same season over multiple years.  相似文献   

6.
The green vegetation fraction (Fg) is an important climate and hydrologic model parameter. A common method to calculate Fg is to create a simple linear mixing model between two NDVI endmembers: bare soil NDVI (NDVIo) and full vegetation NDVI (NDVI). Usually it is assumed that NDVIo is close to zero (NDVIo ∼ 0.05) and is generally chosen from the lowest observed NDVI values. However, the mean soil NDVI computed from 2906 samples is much larger (NDVI = 0.2) and is highly variable (standard deviation = 0.1). We show that the underestimation of NDVIo yields overestimations of Fg. The largest errors occur in grassland and shrubland areas. Using parameters for NDVIo and NDVI derived from global scenes yields overestimations of Fg that are larger than 0.2 for the majority of U.S. land cover types when pixel NDVI values are 0.2 < NDVIpixel < 0.4. When using conterminous U.S. scenes to derive NDVIo and NDVI, the overestimation is less (0.10-0.17 for 0.2 < NDVIpixel < 0.4). As a result, parts of the conterminous U.S. are affected at different times of the year depending on the local seasonal NDVI cycle. We propose using global databases of NDVIo along with information on historical NDVIpixel values to compute a statistically most-likely estimate of Fg. Using in situ measurements made at the Sevilleta LTER, we show that this approach yields better estimates of Fg than using global invariant NDVIo values estimated from whole scenes. At the two studied sites, the Fg estimate was adjusted by 52% at the grassland and 86% at the shrubland. More significant advances will require information on spatial distribution of soil reflectance.  相似文献   

7.
Red band bidirectional reflectance factor data from the NASA MODerate resolution Imaging Spectroradiometer (MODIS) acquired over the southwestern United States were interpreted through a simple geometric-optical (GO) canopy reflectance model to provide maps of fractional crown cover (dimensionless), mean canopy height (m), and aboveground woody biomass (Mg ha− 1) on a 250 m grid. Model adjustment was performed after dynamic injection of a background contribution predicted via the kernel weights of a bidirectional reflectance distribution function (BRDF) model. Accuracy was assessed with respect to similar maps obtained with data from the NASA Multiangle Imaging Spectroradiometer (MISR) and to contemporaneous US Forest Service (USFS) maps based partly on Forest Inventory and Analysis (FIA) data. MODIS and MISR retrievals of forest fractional cover and mean height both showed compatibility with the USFS maps, with MODIS mean absolute errors (MAE) of 0.09 and 8.4 m respectively, compared with MISR MAE of 0.10 and 2.2 m, respectively. The respective MAE for aboveground woody biomass was ~ 10 Mg ha− 1, the same as that from MISR, although the MODIS retrievals showed a much weaker correlation, noting that these statistics do not represent evaluation with respect to ground survey data. Good height retrieval accuracies with respect to averages from high resolution discrete return lidar data and matches between mean crown aspect ratio and mean crown radius maps and known vegetation type distributions both support the contention that the GO model results are not spurious when adjusted against MISR bidirectional reflectance factor data. These results highlight an alternative to empirical methods for the exploitation of moderate resolution remote sensing data in the mapping of woody plant canopies and assessment of woody biomass loss and recovery from disturbance in the southwestern United States and in parts of the world where similar environmental conditions prevail.  相似文献   

8.
We used spaceborne imaging spectroscopy provided by the Earth Observing-1 Hyperion sensor to quantify the relative importance of precipitation and substrate age that control ecosystem development and functioning in Metrosideros polymorpha rainforests of Hawaii. Four hyperspectral vegetation indices provided metrics of forest canopy structure, biochemistry and physiology to compare along gradients of annual rainfall (750 to > 6000 mm year 1) and substrate age (0 to 250,000 years). The canopy greenness index NDVI increased with annual precipitation and substrate age, but saturated in forests with rainfall of 3000 mm year 1. Precipitation and substrate age were roughly equal contributors to the observed greenness of the forests. A canopy water content index (NDWI) also increased with precipitation and substrate age, but did not reach a maximum until very wet (> 5000 mm year 1) forest conditions were encountered on the oldest substrates. The water index appears superior to the NDVI in capturing spatial and climate-substrate driven variations in canopy structure. The photochemical reflectance index (PRI) indicated highest light-use efficiency levels in canopies on the most developed substrates and at annual precipitation levels of 3-4500 mm year 1. A leaf carotenoid index (CRI) suggested a maximum canopy photosynthetic capacity at ∼ 4000 mm rainfall year 1 on the oldest substrates. These results quantify the sensitivity of rainforest canopies to changing precipitation and soil conditions, and they corroborate plot-scale analyses in native Hawaiian forests ecosystems. Structural and functional studies of remote rainforest regions are possible with spaceborne imaging spectroscopy, and could be used to understand the dynamics of rainforests with climate change.  相似文献   

9.
To evaluate the use of multi-frequency, polarimetric Synthetic Aperture Radar (SAR) data for quantifying the above ground biomass (AGB) of open forests and woodlands, NASA JPL AIRSAR (POLSAR) data were acquired over a 37 × 60 km area west of Injune, central Queensland, Australia. From field measurements recorded within 32 50 × 50 m plots, AGB was estimated by applying species-specific allometric equations to stand measurements. AGB was then scaled-up to the larger area using relationships established with Light Detection and Ranging (LiDAR) data acquired over 150 (10 columns, 15 rows) 500 × 150 m cells (or Primary Sampling Units, PSUs) spaced 4 × 4 km apart in the north- and east-west directions. Large-scale (1 : 4000) stereo aerial photographs were also acquired for each PSU to assess species composition. Based on the LiDAR extrapolations, the median AGB for the PSU grid was 82 Mg ha− 1 (maximum 164 Mg ha− 1), with the higher levels associated with forests containing a high proportion of Angophora and Callitris species. Empirical relationships between AGB and SAR backscatter confirmed that C-, L- and P-band saturated at different levels and revealed a greater strength in the relationship at higher incidence angles and a larger dynamic range and consistency of relationships at HV polarizations. A higher level of saturation (above ∼50 Mg ha− 1) was observed at C-band HV compared to that reported for closed forests which was attributable to a link between foliage projected cover (FPC) and AGB. The study concludes that L-band HV backscatter data acquired at incidence angles approaching or exceeding 45° are best suited for estimating the AGB up to the saturation level of ∼80-85 Mg ha− 1. For regional mapping of biomass below the level of saturation, the use of the Japanese Space Exploration Agency (JAXA) Advanced Land Observing Satellite (ALOS) Phase Arrayed L-band SAR (PALSAR) is advocated.  相似文献   

10.
Remote sensing of terrestrial vegetation uses a wide range of vegetation indices (VIs) to monitor plant characteristics, but these indices can be very sensitive to canopy background reflectance. This study investigated background influences on VIs applied to intertidal microphytobenthos, using a synthetic spectral library constituted by a spectral combination of three contrasting types of sediment (sand, fine sand, and mud) and reflectance spectra of benthic diatom monospecific cultures obtained in controlled conditions. The spectral database exhibited, for the same biomass range (3-182 mg chlorophyll a m− 2), marked differences in albedo and spectral contrast linked to sediment variability in water content, grain size, and organic matter content. Several VIs were evaluated, from ratios using visible and near infrared wavelengths, to hyperspectral indices (derivative analysis, continuum removal). Among the ratios, the Normalized Difference Vegetation Index (NDVI) appeared less sensitive to background effects than VIs with soil corrections such as the Perpendicular Vegetation Index (PVI), the Soil-Adjusted Vegetation Index (SAVI), the Modified second Soil-Adjusted Vegetation Index (MSAVI2) or the Transformed Soil-Adjusted Vegetation Index (TSAVI). The lower efficacy of soil-corrected VIs may be explained by the structural differences and optical behavior of soil vs. canopies compared to sediment vs. microphytobenthos biofilms. The background effects were minimized using Modified Gaussian Model indices at 632 nm and 675 nm, and the second derivative at 632 nm, while poor results were obtained with the red-edge inflection point (REIP) and the second derivative at 675 nm. The least sensitive index was the Phytobenthos Index which is very similar to the NDVI, but uses a red wavelength at 632 nm instead of 675 nm, to account for the absorption by chlorophyll c. The modified NDVI705, where the 705 nm wavelength replaces the red band, showed moderate background sensitivity. Moreover, the NDVI705 and the Phytobenthos Index have the additional relevant property of being less sensitive to the index saturation response with increasing biomass. Unfortunately, these VIs cannot be applied to broad-band multispectral satellite images, and require sensors with a hyperspectral resolution. Nevertheless, this study showed that the background influence was not a limitation to applying the ubiquitous NDVI to map intertidal microphytobenthos using multispectral satellite images.  相似文献   

11.
Biomass fractions (total aboveground, branches and foliage) were estimated from a small footprint discrete-return LiDAR system in an unmanaged Mediterranean forest in central Spain. Several biomass estimation models based on LiDAR height, intensity or height combined with intensity data were explored. Raw intensity data were normalized to a standard range in order to remove the range dependence of the intensity signal. In general terms, intensity-based models provided more accurate predictions of the biomass fractions. Height models selected were mainly based on a percentile of the height distribution. Intensity models selected included variables that consider the percentage of the intensity accumulated at different height percentiles, which implicitly take into account the height distribution. The general models derived considering all species together were based on height combined with intensity data. These models yielded R2 values greater than 0.58 for the different biomass fractions considered and RMSE values of 28.89, 18.28 and 1.51 Mg ha1 for aboveground, branch and foliage biomass, respectively. Results greatly improved for species-specific models using the main species present in each plot, with R2 values greater than 0.85, 0.70 and 0.90 for black pine, Spanish juniper and Holm oak, respectively, and with lower RMSE for the biomass fractions. Reductions in LiDAR point density had only a small effect on the results obtained, except for those models based on a variation of the Canopy Reflection Sum, which was weighted by the mean point density. Based on the species-specific equations derived, Holm oak dominated plots showed the highest average carbon contained by aboveground biomass and branch biomass 44.66 and 31.42 Mg ha− 1 respectively, while for foliage biomass carbon, Spanish juniper showed the highest average value (3.04 Mg ha− 1).  相似文献   

12.
According to the IPCC GPG (Intergovernmental Panel on Climate Change, Good Practice Guidance), remote sensing methods are especially suitable for independent verification of the national LULUCF (Land Use, Land-Use Change, and Forestry) carbon pool estimates, particularly the aboveground biomass. In the present study, we demonstrate the potential of standwise (forest stand is a homogenous forest unit with average size of 1-3 ha) forest inventory data, and ASTER and MODIS satellite data for estimating stand volume (m3 ha− 1) and aboveground biomass (t ha− 1) over a large area of boreal forests in southern Finland. The regression models, developed using standwise forest inventory data and standwise averages of moderate spatial resolution ASTER data (15 m × 15 m), were utilized to estimate stand volume for coarse resolution MODIS pixels (250 m × 250 m). The MODIS datasets for three 8-day periods produced slightly different predictions, but the averaged MODIS data produced the most accurate estimates. The inaccuracy in radiometric calibration between the datasets, the effect of gridding and compositing artifacts and phenological variability are the most probable reasons for this variability. Averaging of the several MODIS datasets seems to be one possibility to reduce bias. The estimates obtained were significantly close to the district-level mean values provided by the Finnish National Forest Inventory; the relative RMSE was 9.9%. The use of finer spatial resolution data is an essential step to integrate ground measurements with coarse spatial resolution data. Furthermore, the use of standwise forest inventory data reduces co-registration errors and helps in solving the scaling problem between the datasets. The approach employed here can be used for estimating the stand volume and biomass, and as required independent verification data.  相似文献   

13.
Understanding the spatial variability of tropical forest structure and its impact on the radar estimation of aboveground biomass (AGB) is important to assess the scale and accuracy of mapping AGB with future low frequency radar missions. We used forest inventory plots in old growth, secondary succession, and forest plantations at the La Selva Biological Station in Costa Rica to examine the spatial variability of AGB and its impact on the L-band and P-band polarimetric radar estimation of AGB at multiple spatial scales. Field estimation of AGB was determined from tree size measurements and an allometric equation developed for tropical wet forests. The field data showed very high spatial variability of forest structure with no spatial dependence at a scale above 11 m in old-growth forest. Plot sizes of greater than 0.25 ha reduced the coefficients of variation in AGB to below 20% and yielded a stationary and normal distribution of AGB over the landscape. Radar backscatter measurements at all polarization channels were strongly positively correlated with AGB at three scales of 0.25 ha, 0.5 ha, and 1.0 ha. Among these measurements, PHV and LHV showed strong sensitivity to AGB < 300 Mg ha− 1 and AGB < 150 Mg ha− 1 respectively at the 1.0 ha scale. The sensitivity varied across forest types because of differences in the effects of forest canopy and gap structure on radar attenuation and scattering. Spatial variability of structure and speckle noise in radar measurements contributed equally to degrading the sensitivity of the radar measurements to AGB at spatial scales less than 1.0 ha. By using algorithms based on polarized radar backscatter, we estimated AGB with RMSE = 22.6 Mg ha− 1 for AGB < 300 Mg ha− 1 at P-band and RMSE = 23.8 Mg ha− 1 for AGB < 150 Mg ha− 1 at L-band and with the accuracy optimized at 1-ha scale within 95% confidence interval. By adding the forest height, estimated from the C-band Interferometry data as an independent variable to the algorithm, the AGB estimation improved beyond the backscatter sensitivity by 20% at P-band and 40% at L-band. The results suggested the estimation of AGB can be improved substantially from the fusion of lidar or InSAR derived forest height with the polarimetric backscatter.  相似文献   

14.
The aim of this study was to evaluate the use of ground-based canopy reflectance measurements to detect changes in physiology and structure of vegetation in response to experimental warming and drought treatment at six European shrublands located along a North-South climatic gradient. We measured canopy reflectance, effective green leaf area index (green LAIe) and chlorophyll fluorescence of dominant species. The treatment effects on green LAIe varied among sites. We calculated three reflectance indices: photochemical reflectance index PRI [531 nm; 570 nm], normalized difference vegetation index NDVI680 [780 nm; 680 nm] using red spectral region, and NDVI570 [780 nm; 570 nm] using the same green spectral region as PRI. All three reflectance indices were significantly related to green LAIe and were able to detect changes in shrubland vegetation among treatments. In general warming treatment increased PRI and drought treatment reduced NDVI values. The significant treatment effect on photochemical efficiency of plants detected with PRI could not be detected by fluorescence measurements. However, we found canopy level measured PRI to be very sensitive to soil reflectance properties especially in vegetation areas with low green LAIe. As both soil reflectance and LAI varied between northern and southern sites it is problematic to draw universal conclusions of climate-derived changes in all vegetation types based merely on PRI measurements. We propose that canopy level PRI measurements can be more useful in areas of dense vegetation and dark soils.  相似文献   

15.
A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007 and one date in the summer of 2009 were used. Significant linear correlations were found between the log of aboveground biomass (range of 0.02 to 22.2 t ha-1) and σ° (L-HH) and σ° (L-HV) for the data collected on each of the three dates, with the highest correlation found using the L-HV data collected when soil moisture was highest. Soil moisture, however, did change the correlations between L-band σ° and aboveground biomass, and the analyses suggest that the influence of soil moisture is biomass dependent. The results indicate that to use L-band SAR data for mapping aboveground biomass and monitoring forest regrowth will require development of approaches to account for the influence that variations in soil moisture have on L-band microwave backscatter, which can be particularly strong when low levels of aboveground biomass occur.  相似文献   

16.
Evapotranspiration (ET) is a major pathway for water loss from many ecosystems, and its seasonal variation affects soil moisture and net ecosystem CO2 exchange. We developed an algorithm to estimate ET using a semi-empirical Priestley-Taylor (PT) approach, which can be applied at a range of spatial scales. We estimated regional net radiation (Rnet) at monthly time scales using MODerate resolution Imaging Spectroradiometer (MODIS) albedo and land surface temperature. Good agreement was found between satellite-based estimates of monthly Rnet and field-measured Rnet, with a RMSE of less than 30 W m− 2. An adjustable PT coefficient was parameterized as a function of leaf area index and soil moisture based on observations from 27 AmeriFlux eddy covariance sites. The biome specific optimization using tower-based observations performed well, with a RMSE of 17 W m− 2 and a correlation of 0.90 for predicted monthly latent heat. We implemented the approach within the hydrology module of the CASA biogeochemical model, and used it to estimate ET at a 1 km spatial resolution for the conterminous United States (CONUS). The RMSE of modeled ET was reduced to 21.1 mm mon− 1, compared to 27.1 mm mon− 1 in the original CASA model. The monthly ET rates averaged over the Mississippi River basin were similar to those derived using GRACE satellite measurements and river discharge data. ET varied substantially over the CONUS, with annual mean values of 110 ± 76 mm yr− 1 in deserts, 391 ± 176 mm yr− 1 in savannas and grasslands, and 840 ± 234 mm yr− 1 in broadleaf forests. The PT coefficient was the main driver for the spatial variation of ET in arid areas, whereas Rnet controlled ET when mean annual precipitation was higher than approximately 400 mm yr− 1.  相似文献   

17.
In response to the urgent need for improved mapping of global biomass and the lack of any current space systems capable of addressing this need, the BIOMASS mission was proposed to the European Space Agency for the third cycle of Earth Explorer Core missions and was selected for Feasibility Study (Phase A) in March 2009. The objectives of the mission are 1) to quantify the magnitude and distribution of forest biomass globally to improve resource assessment, carbon accounting and carbon models, and 2) to monitor and quantify changes in terrestrial forest biomass globally, on an annual basis or better, leading to improved estimates of terrestrial carbon sources (primarily from deforestation); and terrestrial carbon sinks due to forest regrowth and afforestation. These science objectives require the mission to measure above-ground forest biomass from 70° N to 56° S at spatial scale of 100-200 m, with error not exceeding ± 20% or ± 10 t ha− 1 and forest height with error of ± 4 m. To meet the measurement requirements, the mission will carry a P-Band polarimetric SAR (centre frequency 435 MHz with 6 MHz bandwidth) with interferometric capability, operating in a dawn-dusk orbit with a constant incidence angle (in the range of 25°-35°) and a 25-45 day repeat cycle. During its 5-year lifetime, the mission will be capable of providing both direct measurements of biomass derived from intensity data and measurements of forest height derived from polarimetric interferometry. The design of the BIOMASS mission spins together two main observational strands: (1) the long heritage of airborne observations in tropical, temperate and boreal forest that have demonstrated the capabilities of P-band SAR for measuring forest biomass; (2) new developments in recovery of forest structure including forest height from Pol-InSAR, and, crucially, the resistance of P-band to temporal decorrelation, which makes this frequency uniquely suitable for biomass measurements with a single repeat-pass satellite. These two complementary measurement approaches are combined in the single BIOMASS sensor, and have the satisfying property that increasing biomass reduces the sensitivity of the former approach while increasing the sensitivity of the latter. This paper surveys the body of evidence built up over the last decade, from a wide range of airborne experiments, which illustrates the ability of such a sensor to provide the required measurements.At present, the BIOMASS P-band radar appears to be the only sensor capable of providing the necessary global knowledge about the world's forest biomass and its changes. In addition, this first chance to explore the Earth's environment with a long wavelength satellite SAR is expected to make yield new information in a range of geoscience areas, including subsurface structure in arid lands and polar ice, and forest inundation dynamics.  相似文献   

18.
There is a need for accurate inventory methods that produce relevant and timely information on the forest resources and carbon stocks for forest management planning and for implementation of national strategies under the United Nations Collaborative Program on Reduced Emissions from Deforestation and Forest Degradation in Developing Countries (REDD). Such methods should produce information that is consistent across various geographical scales. Airborne scanning Light Detection and Ranging (LiDAR) is among the most promising remote sensing technologies for estimation of forest resource information such as timber volume and biomass, while acquisition of three dimensional data with Interferometric Synthetic Aperture Radar (InSAR) from space is seen as a relevant option for inventory in the tropics because of its ability to “see through the clouds” and its potential for frequent updates at low costs. Based on a stratified probability sample of 201 field survey plots collected in a 960 km2 boreal forest area in Norway, we demonstrate how total above-ground biomass (AGB) can be estimated at three distinct geographical levels in such a way that the estimates at a smaller level always sum up to the estimate at a larger level. The three levels are (1) a district (the entire study area), (2) a village, local community or estate level, and (3) a stand or patch level. The LiDAR and InSAR data were treated as auxiliary information in the estimation. At the two largest geographical levels model-assisted estimators were employed. A model-based estimation was conducted at the smallest level. Estimates of AGB and corresponding error estimates based on (1) the field sample survey were compared with estimates obtained by using (2) LiDAR and (3) InSAR data as auxiliary information. For the entire study area, the estimates of AGB were 116.0, 101.2, and 111.3 Mg ha−1, respectively. Corresponding standard error estimates were 3.7, 1.6, and 3.2 Mg ha−1. At the smallest geographical level (stand) an independent validation on 35 large field plots was carried out. RMSE values of 17.1-17.3 Mg ha−1 and 42.6-53.2 Mg ha−1 were found for LiDAR and InSAR, respectively. A time lag of six years between acquisition of InSAR data and field inventory has introduced some errors. Significant differences between estimates and reference values were found, illustrating the risk of using pure model-based methods in the estimation when there is a lack of fit in the models. We conclude that the examined remote sensing techniques can provide biomass estimates with smaller estimated errors than a field-based sample survey. The improvement can be highly significant, especially for LiDAR.  相似文献   

19.
It is preferable to prepare internally consistent maps of arid regions on a global scale in order to understand the present conditions of arid regions, especially deserts and soil degradation areas. We attempted to delimit arid regions at a global scale by combining climate data, i.e. aridity index (AI), and vegetation data, i.e. vegetation index. The annual AI was estimated by the ratio of mean annual precipitation to mean annual potential evapotranspiration, using the Thornthwaite method. The long-term mean of yearly maximum normalized difference vegetation index (NDVIymx) was used as an indicator of the vegetation condition. Arid regions of the world were classified into four categories, namely A, severe deserts, where both aridity and vegetation indices are very small; G, semi-arid regions, where the vegetation index is proportionally related to the AI; I, irrigated areas and oases, where the vegetation is relatively abundant despite severe dryness; and S, soil degradation areas, where the vegetation is poor despite relatively humid conditions. The Sahel from Niger to Chad, the Sahel in Darfur, and the Ordos Plateau in China are within Category S. The standard deviation of NDVIymx is very small/large in severe deserts/semi-arid areas, respectively. Thus, the Sahara desert was clearly distinguished from the Sahel; the latter belongs to Category G and drought occurs frequently here. In Category S zones, the standard deviation of NDVIymx is relatively small compared with that within the Category G zone because the return rainfall does not seem to promptly restore productivity. Category S was divided into three subdivisions according to the degree of degradation, expressed by the ratio of the AI to vegetation index. Category G was also divided into four classes, according to degree of vegetation (or aridity). The distribution of Category S is comparable to the soil degradation areas mapped by Global Assessment of Human-Induced Soil Degradation (GLASOD) data. True deserts, where the standard deviation of NDVIymx is very small, were selected from the ‘severe desert’ group. Desert areas were classified as true deserts, severe deserts, grassland deserts (Category G), and soil degradation deserts (Category S).  相似文献   

20.
Simple regression algorithms were developed to quantify spatio-temporal dynamics of minimum and maximum air temperatures (Tmin and Tmax, respectively) and soil temperature for a depth of 0-5 cm (Tsoil-5cm) across complex terrain in Turkey using Moderate Resolution Imaging Spectroradiometer (MODIS) data at a 500-m resolution. A total of 762 16-day MODIS composites (127 images × 6 bands) between 2000 and 2005 were averaged over a monthly basis to temporally match monthly Tmin, Tmax, and Tsoil-5cm from 83 meteorological stations. A total of 60 (28 temporally averaged plus 32 time series-based) linear regression models of Tmin, Tmax, and Tsoil-5cm were developed using best subsets procedure as a function of a combination of 12 explanatory variables: six MODIS bands of blue, red, near infrared (NIR), middle infrared (MIR), normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI); four geographical variables of latitude, longitude, altitude, and distance to sea (DtS); and two temporal variables of month, and year. The best multiple linear regression models elucidated 65% (RMSE = 5.9 °C), 65% (RMSE = 5.1 °C), and 57% (RMSE = 6.9 °C) of variations in Tmin, Tmax, and Tsoil-5cm, respectively, under a wide range of Tmin (−34 to 25 °C), Tmax (0.2-47 °C) and Tsoil-5cm (−9 to 40 °C) observed at the 83 stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号