首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study presents a new semi-automatic method to map burned areas by using multi-temporal Land Remote Sensing Satellite Program (Landsat) Thematic Mapper (TM) and Enhanced TM Plus (ETM+) images. The method consists of a set of rules that are valid especially when the post-fire satellite image has been captured shortly after the fire event. The overall accuracy of the method when applied to two case studies in Mt Parnitha and Samos Island in Greece were 95.69% and 93.98%, respectively. The commission and omission errors for Mt Parnitha were 6.92% and 10.24%, while those for Samos Island were 3.97% and 8.80%, respectively. Between the two types of error, it is preferred to minimize omission errors, since commission errors can be easily identified as part of product quality assessment and algorithm tuning procedures. The rule-based approach minimizes human interventions and makes it possible to run the mapping algorithm for a series of images that would otherwise need extensive time investment. In case of failure to capture burned areas correctly, it is possible either to make some adjustments by modifying the thresholding coefficients of the rules, or to discard some of the rules, since some editing is usually required to correct errors following the automated extraction procedures. When this method was applied to a series of US Geological Survey (USGS) Landsat TM and ETM+ archived satellite images covering the periods 1984–1991 and 1999–2009, a total of 1773 fires were identified and mapped from six different scenes that covered Attica and the Peloponnese in Greece. The majority of uncaptured burned areas corresponded to fires with size classes of 0–1 ha and 1–5 ha, where the loss in capturing fire scars is generally significant. This was expected since it is possible that small fires, identified and recorded by forest authorities, may not have been captured by satellite data due to limitations arising either from the spatial resolution of the sensor or imposed by the temporal series, which do not systematically cover the full period.  相似文献   

2.
This paper presents a semi-automatic methodology for fire scars mapping from a long time series of remote sensing data. Approximately, a hundred MSS images from different Landsat satellites were employed over an area of 32 100 km2 in the north-east of the Iberian Peninsula. The analysed period was from 1975 to 1993. Results are a map series of fire history and frequencies. Omission errors are 23% for burned areas greater than 200 ha while commission errors are 8% for areas greater than 50 ha. Subsequent work based on the resultant fire scars will also help in describing fire regime and in monitoring post-fire regeneration dynamics.  相似文献   

3.
Vegetation indices and transformations have been used extensively in forest change detection studies. In this study, we processed multitemporal normalized difference moisture index (NDMI) and tasseled cap wetness (TCW) data sets and compared their statistical relationships and relative efficiencies in detecting forest disturbances associated with forest type and harvest intensity at five, two and one year Landsat acquisition intervals. The NDMI and TCW were highly correlated (>0.95 r2) for all five image dates. There was no significant difference between TCW and NDMI for detecting forest disturbance. Using either a NDMI or TCW image differencing method, when Landsat image acquisitions were 5 years apart, clear cuts could be detected with nearly equal accuracy compared to images collected 2 years apart. Partial cuts had much higher commission and omission errors compared to clear cut. Both methods had 7-8% higher commission and 12-22% higher omission error to detect hardwood disturbance when it occurred in the first year of the 2-year interval (as compared to 1-year interval). Softwood and hardwood change detection errors were slightly higher at 2-year Landsat acquisition intervals compared to 1-year interval. For images acquired 1 and 2 years apart, NDMI forest disturbance commission and omission errors were slightly lower than TCW. The NDMI can be calculated using any sensor that has near-infrared and shortwave bands and is at least as accurate as TCW for detecting forest type and intensity disturbance in biomes similar to the Maine forest, particularly when Landsat images are acquired less than 2 years apart. Where partial cutting is the most dominant harvesting system as is currently the case in northern Maine, we recommend images collected every year to minimize (particularly omission) errors. However, where clear cuts or nearly complete canopy removal occurs, Landsat intervals of up to 5 years may be nearly as accurate in detecting forest change as 1 or 2 year intervals.  相似文献   

4.
Uncertainties in burning efficiency (BE) estimates can lead to large errors in fire emission quantification (from 23% to 46%). One of the main causes of these errors is the spatial variability of fuel consumption within burned areas. This paper studies whether burn severity (BS) maps can be used to improve BE assessment. A burn severity map of two large fires in California was obtained by inverting a simulation model constrained by post-fire observations from Landsat TM imagery. Model output values of BS were validated against field measurements, obtaining a high correlation (R2 = 0.85) and low errors (Root Mean Square Error, RMSE = 0.14) throughout a wide range of BS levels. The BS map obtained was then used to adjust BE reference values per vegetation type found in the area before the fire. The adjusted burning efficiency (BEadj) was compared to the burned biomass, which was estimated by subtracting vegetation indices from pre- and post-fire images. Results showed a high correlation for conifers (R2 = 0.75) and hardwoods (R2 = 0.73), and a moderate correlation (R2 ∼ 0.5) for shrubs and grasslands. In general, for all vegetation types BEadj performed better (R2 = 0.4-0.75) than literature-based BE (R2 < 0.0001). This study demonstrates: (i) the consistency of the simulation model inversion for BS estimation in temperate ecosystems, and (ii) the improvement of BE estimation when the spatial variability of the combustion was quantified in terms of BS.  相似文献   

5.
This study reports on the glacial cover evolution of the Nevado Coropuna between 1955 and 2003, based on Peruvian topographic maps and satellite images taken from the Landsat 2 and 5 multispectral scanner (MSS), Landsat 5 Thematic Mapper (TM) and Landsat 7 (ETM+). The normalized difference snow index has been applied to these images to estimate the glacierized area of Coropuna. The satellite-based results show that the glacier area was 105 ± 16 km2 in 1975 (Landsat 2 MSS), which then reduced to 96 ± 15 km2 in 1985 (Landsat 5 MSS), 64 ± 8 km2 in 1996 (Landsat 5 TM) and 56 ± 6 km2 in 2003 (Landsat 5 TM). Altogether, between 1955 and 2003, Coropuna lost 66 km2 of its glacial cover, which represents a mean retreat of 1.4 km2 year?1, that is, a loss of 54% in 48 years (11% loss per decade). The maximum rate of retreat occurred during the 1980s and 1990s, a phenomenon probably linked with the pluviometric deficit of El Niño events of 1983 and 1992.  相似文献   

6.
Landsat-based inventory of glaciers in western Canada, 1985-2005   总被引:10,自引:0,他引:10  
We report on a glacier inventory for the Canadian Cordillera south of 60°N, across the two western provinces of British Columbia and Alberta, containing ~ 30,000 km2 of glacierized terrain. Our semi-automated method extracted glacier extents from Landsat Thematic Mapper (TM) scenes for 2005 and 2000 using a band ratio (TM3/TM5). We compared these extents with glacier cover for the mid-1980s from high-altitude, aerial photography for British Columbia and from Landsat TM imagery for Alberta. A 25 m digital elevation model (DEM) helped to identify debris-covered ice and to split the glaciers into their respective drainage basins. The estimated mapping errors are 3-4% and arise primarily from seasonal snow cover. Glaciers in British Columbia and Alberta respectively lost − 10.8 ± 3.8% and − 25.4% ± 4.1% of their area over the period 1985-2005. The region-wide annual shrinkage rate of − 0.55% a− 1 is comparable to rates reported for other mountain ranges in the late twentieth century. Least glacierized mountain ranges with smaller glaciers lost the largest fraction of ice cover: the highest relative ice loss in British Columbia (− 24.0 ± 4.6%) occurred in the northern Interior Ranges, while glaciers in the northern Coast Mountains declined least (− 7.7 ± 3.4%).  相似文献   

7.
Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars < 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (> 500 ha) burn scars that accounted for the majority of all fire-damaged forests in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 km2) were an order of magnitude higher than during the 1997-1998 El Niño event (124 km2 and 39 km2, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series.  相似文献   

8.
Desert spring ecosystems provide water resources essential for sustaining wildlife, plants, and humans inhabiting arid regions of the world. Disturbance processes in desert spring ecosystems are likely important but have not been well studied. Documentation of historic wildfires in these often remote areas has been inconsistent and proxy records are often not available. Remote sensing methods have been used in other environments to gain information about fires that have occurred over recent decades, but these methods have not been tested in desert spring environments. The differenced normalized burn ratio (dNBR) is the most commonly used method for delineating fire perimeters and burn severity mosaics, although another method, differenced linear spectral unmixing (dSMA), may produce more accurate results in heterogeneous desert spring ecosystems due to its ability to detect changes at the sub-pixel scale. This study compared dNBR and dSMA using field observations of burn presence and fire severity for two recent wildfires. The dNBR method outperformed dSMA, but required some post-processing manipulation to reduce errors of commission. The dNBR classification correctly indentified burned areas with 86% accuracy (3% omission error, 19% commission error) and classified fire severity with 76% accuracy. Misclassification errors were most common in dune and mesquite bosque/meadow land cover types (mean misclassification rate = 36%). Nine of the fifteen wildfires reported to have occurred in the study site were successfully identified, with five of the unidentified fires having reported sizes of less than one hectare. Additional refinement of remote sensing methods is necessary to better distinguish small (< 5 ha) burned areas from areas of change resulting from soil moisture fluctuation and other short-term shifts in background conditions.  相似文献   

9.
The Restinga of Marambaia is an emerged sand bar located between the Sepetiba Bay and the South Atlantic Ocean, on the south‐east coast of Brazil. The objective of this study was to observe the geomorphologic evolution of the coastal zone of the Restinga of Marambaia using multitemporal satellite images acquired by multisensors from 1975 to 2004. The images were digitally segmented by a region growth algorithm and submitted to an unsupervised classification procedure (ISOSEG) followed by a raster edit based on visual interpretation. The image time‐series showed a general trend of decrease in the total sand bar area with values varying from 80.61 km2 in 1975 to 78.15 km2 in 2004. The total area calculation based on the 1975 and 1978 Landsat MSS data was shown to be super‐estimated in relation to the Landsat TM, Landsat ETM+, and CBERS‐2 CCD data. These differences can also be associated to the relatively poorer spatial resolution of the MSS data, nominally 79 m, against the 20 m of the CCD data and 30 m of the TM and ETM+ data. For the estimates of the width in the central portion of the sand bar the variation was from 158 m (1975) to 100 m (2004). The formation of a spit in the northern region of the study area was visually observed. The area of the spit was estimated, with values varying from 0.82 km2 (1975) to 0.55 km2 (2004).  相似文献   

10.
Lack of data often limits understanding and management of biodiversity in forested areas. Remote sensing imagery has considerable potential to aid in the monitoring and prediction of biodiversity across many spatial and temporal scales. In this paper, we explored the possibility of defining relationships between species diversity indices and Landsat ETM+ reflectance values for Hyrcanian forests in Golestan province of Iran. We used the COST model for atmospheric correction of the imagery. Linear regression models were implemented to predict measures of biodiversity (species richness and reciprocal of Simpson indices) using various combinations of Landsat spectral data. Species richness was modeled using the band set ETM5, ETM7, DVI, wetness and variances of ETM1, ETM2 and ETM5 (adjusted R2 = 0.59, RMSE = 1.51). Reciprocal of Simpson index was modeled using the band set NDVI, brightness, greenness, variances of ETM2, ETM5 and ETM7 (adjusted R2 = 0.459 RMSE = 1.15). The results demonstrated that spectral reflectance from Landsat can be used to effectively model tree species diversity. Predictive map derived from the presented methodology can help evaluate spatial aspects and monitor tree species diversity of the studied forest. The methodology also facilitates the evaluation of forest management and conservation strategies in northern Iran.  相似文献   

11.
There has been growing concern about land use/land cover change in tropical regions, as there is evidence of its influence on the observed increase in atmospheric carbon dioxide concentration and consequent climatic changes. Mapping of deforestation by the Brazil's National Space Research Institute (INPE) in areas of primary tropical forest using satellite data indicates a value of 587,727 km2 up to the year 2000. Although most of the efforts have been concentrated in mapping primary tropical forest deforestation, there is also evidence of large-scale deforestation in the cerrado savanna, the second most important biome in the region.The main purpose of this work was to assess the extent of agriculture/pasture and secondary succession forest in the Brazilian Legal Amazon (BLA) in 2000, using a set of multitemporal images from the 1-km SPOT-4 VEGETATION (VGT) sensor. Additionally, we discriminated primary tropical forest, cerrado savanna, and natural/artificial waterbodies. Four classification algorithms were tested: quadratic discriminant analysis (QDA), simple classification trees (SCT), probability-bagging classification trees (PBCT), and k-nearest neighbors (K-NN). The agriculture/pasture class is a surrogate for those areas cleared of its original vegetation cover in the past, acting as a source of carbon. On the contrary, the secondary succession forest class behaves as a sink of carbon.We used a time series of 12 monthly composite images of the year 2000, derived from the SPOT-4 VGT sensor. A set of 19 Landsat scenes was used to select training and testing data. A 10-fold cross validation procedure rated PBCT as the best classification algorithm, with an overall sample accuracy of 0.92. High omission and commission errors occurred in the secondary succession forest class, due to confusion with agriculture/pasture and primary tropical forest classes. However, the PBCT algorithm generated the lower misclassification error in this class. Besides, this algorithm yields information about class membership probability, with ∼80% of the pixels with class membership probability greater or equal than 0.8. The estimated total area of agriculture/pasture and secondary succession forest in 2000 in the BLA was 966 × 103 and 140 × 103 km2, respectively. Comparison with an existing land cover map indicates that agriculture/pasture occurred primarily in areas previously occupied by primary tropical forest (46%) and cerrado savanna (33%), and also in transition forest (19%), and other vegetation types (2%). This further confirms the existing evidence of extensive cerrado savanna conversion.This study also concludes that SPOT-4 VGT data are adequate for discriminating several major land cover types in tropical regions. Agriculture/pasture was mapped with errors of about 5%. Very high classification errors were associated with secondary succession forest, suggesting that a different methodology/sensor has to be used to address this difficult land cover class (namely with the inclusion of ancillary data). For the other classes, we consider that accurate maps can be derived from SPOT-4 VGT data with errors lower than 20% for the cerrado savanna, and errors lower than 10% for the other land cover classes. These estimates may be useful to evaluate impacts of land use/land cover change on the carbon and water cycles, biotic diversity, and soil degradation.  相似文献   

12.
Time series of snow covered area (SCA) estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper (ETM+) were merged with a spatially explicit snowmelt model to reconstruct snow water equivalent (SWE) in the Rio Grande headwaters (3419 km2). A linear optimization scheme was used to derive SCA estimates that preserve the statistical moments of the higher spatial resolution (i.e. 30 m) ETM+ data and resolve the superior temporal signal (i.e. ∼ daily) of the MODIS data. It was found that merging the two SCA products led to an 8% decrease and an 18% increase in the basinwide SWE in 2001 and 2002, respectively, compared to the SWE estimated from ETM+ only. Relative to SWE simulations using only ETM+ data, the hybrid SCA estimates reduced the mean absolute SWE error by 17 and 84% in 2001 and 2002, respectively; errors were determined using intensive snow survey data and two separate methods of scaling snow survey field measurements of SWE to the 1-km model pixel resolution. SWE bias for both years was reduced by 49% and skewness was reduced from − 0.78 to 0.49. These results indicate that the hybrid SWE was closer to being an unbiased estimate of the measured SWE and errors were distributed more normally. The accuracy of the SCA estimates is likely dependent on the vegetation fraction.  相似文献   

13.
Accurate landscape-scale maps of forests and associated disturbances are critical to augment studies on biodiversity, ecosystem services, and the carbon cycle, especially in terms of understanding how the spatial and temporal complexities of damage sustained from disturbances influence forest structure and function. Vegetation change tracker (VCT) is a highly automated algorithm that exploits the spectral-temporal properties of summer Landsat time series stacks (LTSSs) to generate spatially explicit maps of forest and recent forest disturbances. VCT performs well in contiguous forest landscapes with closed or nearly closed canopies, but often incorrectly classifies large patches of land as forest or forest disturbance in the complex and spatially heterogeneous environments that typify fragmented forest landscapes. We introduce an improved version of VCT (dubbed VCTw) that incorporates a nonforest mask derived from snow-covered winter Landsat time series stacks (LTSSw) and compare it with VCT across nearly 25 million ha of land in the Lake Superior (Canada, USA) and Lake Michigan (USA) drainage basins.Accuracy assessments relying on 87 primary sampling units (PSUs) and 2640 secondary sampling units (SSUs) indicated that VCT performed with an overall accuracy of 86.3%. For persisting forest, the commission error was 14.7% and the omission error was 4.3%. Commission and omission errors for the two forest disturbance classes fluctuated around 50%. VCTw produced a statistically significant increase in overall accuracy to 91.2% and denoted about 1.115 million ha less forest (− .371 million ha disturbed and − 0.744 million ha persisting). For persisting forest, the commission error decreased to 9.3% and the omission error was relatively unchanged at 5.0%. Commission errors decreased considerably to near 22% and omission errors remained near 50% in both forest disturbance classes.Dividing the assessments into three geographic strata demonstrated that the most dramatic improvement occurred across the southern half of the Lake Michigan basin, which contains a highly fragmented agricultural landscape and relatively sparse deciduous forest, although substantial improvements occurred in other geographic strata containing little agricultural land, abundant wetlands, and extensive coniferous forest. Unlike VCT, VCTw also generally corresponded well with field-based estimates of forest cover in each stratum. Snow-covered winter imagery appears to be a valuable resource for improving automated disturbance mapping accuracy. About 34% of the world's forests receive sufficient snowfall to cover the ground and are potentially suitable for VCTw; other season-based techniques may be worth pursuing for the remaining 66%.  相似文献   

14.
Improved wildland fire emission inventory methods are needed to support air quality forecasting and guide the development of air shed management strategies. Air quality forecasting requires dynamic fire emission estimates that are generated in a timely manner to support real-time operations. In the regulatory and planning realm, emission inventories are essential for quantitatively assessing the contribution of wildfire to air pollution. The development of wildland fire emission inventories depends on burned area as a critical input. This study presents a Moderate Resolution Imaging Spectroradiometer (MODIS) - direct broadcast (DB) burned area mapping algorithm designed to support air quality forecasting and emission inventory development. The algorithm combines active fire locations and single satellite scene burn scar detections to provide a rapid yet robust mapping of burned area. Using the U.S. Forest Service Fire Sciences Laboratory (FiSL) MODIS-DB receiving station in Missoula, Montana, the algorithm provided daily measurements of burned area for wildfire events in the western U.S. in 2006 and 2007. We evaluated the algorithm's fire detection rate and burned area mapping using fire perimeter data and burn scar information derived from high resolution satellite imagery. The FiSL MODIS-DB system detected 87% of all reference fires > 4 km2, and 93% of all reference fires > 10 km2. The burned area was highly correlated (R2 = 0.93) with a high resolution imagery reference burn scar dataset, but exhibited a large over estimation of burned area (56%). The reference burn scar dataset was used to calibrate the algorithm response and quantify the uncertainty in the burned area measurement at the fire incident level. An objective, empirical error based approach was employed to quantify the uncertainty of our burned area measurement and provide a metric that is meaningful in context of remotely sensed burned area and emission inventories. The algorithm uncertainty is ± 36% for fires 50 km2 in size, improving to ± 31% at a fire size of 100 km2. Fires in this size range account for a substantial portion of burned area in the western U.S. (77% of burned area is due to fires > 50 km2, and 66% results from fires > 100 km2). The dominance of these large wildfires in burned area, duration, and emissions makes these events a significant concern of air quality forecasters and regulators. With daily coverage at 1-km2 spatial resolution, and a quantified measurement uncertainty, the burned area mapping algorithm presented in this paper is well suited for the development of wildfire emission inventories. Furthermore, the algorithm's DB implementation enables time sensitive burned area mapping to support operational air quality forecasting.  相似文献   

15.
The potential of the recent SPOT VEGETATION (VGT) sensor for characterizing boreal forest fires was investigated. Its capability for hotspot detection and burned area mapping was assessed by analysing a series of VGT, NOAA/AVHRR, and Landsat TM images over a 1541 km2  相似文献   

16.
Burned area is a critical input to the algorithms of biomass burning emissions and understanding variability in fire activity due to climate change but it is difficult to estimate. This study presents a robust algorithm to reconstruct the patterns in burned areas across Contiguous United States (CONUS) in diurnal, seasonal, and interannual scales from 2000-2006. Specifically, burned areas in individual fire pixels are empirically calculated using diurnal variations in instantaneous fire sizes from the Geostationary Operational Environmental Satellites (GOES) WF_ABBA (Wildfire Automated Biomass Burning Algorithm) fire product. GOES burned areas exhibit diurnal variability with a temporal scale of half hours. The cumulative burned area during 9:00-16:00 local solar time accounts for 65%-81% of the total daily burned area. The diurnal variability is strongest in croplands compared to shrublands, grasslands, savannas, and forests. Analysis on a seasonal scale indicates that over 56% of burning occurs during summer (June-August). On average, the total annual burned area during the last seven years is 2.12 × 104 ± 0.41 × 104 km2. The algorithm developed in this study can be applied to obtain burned area from the detections of GOES active fires at near real time, which can greatly improve the estimates of biomass burning emissions needed for predicting air quality.  相似文献   

17.
In this work, an empirical study was carried out to evaluate the impact of the spatial resolution of satellite images on the accuracy and uncertainty of burned area detection using classification techniques based on neuro-fuzzy (NF) models. The study area was situated in the northwest of the Iberian Peninsula, where in the summer of 2006, a large number of fires occurred, razing a surface area of more than 100,000 ha. A set of 12 zones containing a burned area in their central part were selected. Landsat Thematic Mapper (TM), Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer Local Area Coverage (AVHRR-LAC), and Advanced Very High Resolution Radiometer Land Long Term Data Record (AVHRR-LTDR) images with a spatial resolution of 30, 250, 1100 m, and 0.05° (~5000 m), respectively, obtained on 20 August 2006, were used. An NF classifier at pixel level for every image was constructed, taking into account only the spectrum bands (red and near-infrared (NIR)) common to all of them. The results in the study region suggest that burned areas of ~1200 ha could be detected with a mean relative error less than 30% only in the MODIS image. In the case of the LAC and LTDR images, a minimum burned area size of >1800 ha and >3600 ha, respectively, is required to find similar errors. Burned areas greater >3600 ha can be detected in MODIS imagery with a mean relative error of ~15%. A regression model of commission and omission error intervals compared with spatial resolution is presented. The conclusion is that in regard to the conditions of the study area, both error intervals increase symmetrically and linearly with the logarithm of the pixel size. The results also suggest that red and NIR spectrum bands could be used to detect burned area in post-fire images in Iberia, but with a relative error depending on burned area size for different spatial resolutions.  相似文献   

18.
The Sundarbans is the world's largest remaining single block of mangrove forest, covering approximately 1 million ha (~ 10,000 km2) of the Ganges-Brahmaputra delta along the coastal areas of India and Bangladesh. Sea level rise and alteration of water flows of the Himalayan headwaters are among the major disturbances threatening these coastal areas. But very few studies exist on the dynamics or current status of the Sundarbans coastline. We used Landsat images spanning from 1973 to 2010, and an algorithm that we developed, to consistently estimate the spatiotemporal dynamics of erosion and accretion for four different time intervals and the whole study period. Our results show that the direction and extent of erosion and accretion rates varied throughout the different periods. Erosion was the highest in the 1973-1979 interval, with 23.2 km2 year−1 of land loss. However, that rate substantially declined in the following periods, reaching a rate of 7-10 km2 year−1. Accretion showed a rate of 10 km2 year−1 between 1973 and 1989, but substantially declined to ~ 4 km2 year−1 between 1989 and 2010. Accretion rate has declined in the recent years but erosion rate has remained relatively high. As a result the delta front has undergone a net erosion of ~ 170 km2 of coastal land in the 37 years of our study period. These numbers are significantly higher than the previously reported rates and magnitudes of erosion in this area. The methods and maps developed in this study may be helpful in management planning of this vulnerable coastline.  相似文献   

19.
利用环境减灾小卫星多光谱数据研究过火区的制图方法,并分析对比了4种植被指数对于过火区的分离性。结果表明:基于可见光和近红外的BAI(Burned Area Index)与GEMI(Global Environment Monitoring Index)指数对于过火区的分离能力较好。在此基础上,采用二阶段识别算法对实验区的过火区进行提取。首先采用严格的阈值提取燃烧较为严重的过火像元,并以此作为第二阶段过火区识别的“种子”点,该阶段以减少误判为目的;第二阶段采用区域生长提取其他过火区域,同时采取较为宽松的阈值作为生长准则,以减少漏判,最后得出过火区边界。精度验证结果表明:该方法提取的过火区误判率为5.5%,漏判率为12.7%。  相似文献   

20.
Accurate production of regional burned area maps are necessary to reduce uncertainty in emission estimates from African savannah fires. Numerous methods have been developed that map burned and unburned surfaces. These methods are typically applied to coarse spatial resolution (1 km) data to produce regional estimates of the area burned, while higher spatial resolution (<30 m) data are used to assess their accuracy with little regard to the accuracy of the higher spatial resolution reference data. In this study we aimed to investigate whether Landsat Enhanced Thematic Mapper (ETM+)‐derived reference imagery can be more accurately produced using such spectrally informed methods. The efficacy of several spectral index methods to discriminate between burned and unburned surfaces over a series of spatial scales (ground, IKONOS, Landsat ETM+ and data from the MOderate Resolution Imaging Spectrometer, MODIS) were evaluated. The optimal Landsat ETM+ reference image of burned area was achieved using a charcoal fraction map derived by linear spectral unmixing (k = 1.00, a = 99.5%), where pixels were defined as burnt if the charcoal fraction per pixel exceeded 50%. Comparison of coincident Landsat ETM+ and IKONOS burned area maps of a neighbouring region in Mongu (Zambia) indicated that the charcoal fraction map method overestimated the area burned by 1.6%. This method was, however, unstable, with the optimal fixed threshold occurring at >65% at the MODIS scale, presumably because of the decrease in signal‐to‐noise ratio as compared to the Landsat scale. At the MODIS scale the Mid‐Infrared Bispectral Index (MIRBI) using a fixed threshold of >1.75 was determined to be the optimal regional burned area mapping index (slope = 0.99, r 2 = 0.95, SE = 61.40, y = Landsat burned area, x = MODIS burned area). Application of MIRBI to the entire MODIS temporal series measured the burned area as 10 267 km2 during the 2001 fire season. The char fraction map and the MIRBI methodologies, which both produced reasonable burned area maps within southern African savannah environments, should also be evaluated in woodland and forested environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号