首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the launch of sensors with angular observation capabilities, such as CHRIS and MISR, the additional potential of multi-angular observations for vegetation structural and biochemical variables has been widely recognised. Various methods have been successfully implemented to estimate forest biochemical and biophysical variables from atmospherically-corrected multi-angular data, but the use of physically based radiative transfer (RT) models is still limited. Because both canopy and atmosphere have an anisotropic behaviour, it is important to understand the multi-angular signal measured by the sensor at the top of the atmosphere (TOA). Coupled canopy-atmosphere RT models allow linking surface variables directly to the TOA radiance measured by the sensor and are therefore very interesting tools to use for estimating forest variables from multi-angular data.We investigated the potential of TOA multi-angular radiance data for estimating forest variables by inverting a coupled canopy-atmosphere physical RT model. The case study focussed on three Norway spruce stands located at the Bily Kriz experimental site (Czech Republic), for which multi-angular CHRIS and field data were acquired in September 2006. The soil-leaf-canopy RT model SLC and the atmospheric model MODTRAN4 were coupled using a method allowing to make full use of the four canopy angular reflectance components provided by SLC. The TOA radiance simulations were in good agreement with the spectral and angular signatures measured by CHRIS. Singular value decompositions of the Jacobian matrices showed that the dimensionality of the variable estimation problem increased from 3 to 6 when increasing the number of observation angles from 1 to 4. The model inversion was conducted for two cases: 4 and 7 variables. The most influential parameters were chosen as free variables in the look-up tables, namely: vertical crown cover (Cv), fraction of bark material (fB), needle chlorophyll content (needleCab), needle dry matter content (needleCdm) for the 4-variable case, and additionally, tree shape factor (Zeta), dissociation factor (D), and needle brown pigments content (needleCs) in the 7-variable case. All angular combinations were tested, and the best estimates were obtained with combinations using two or three angles, depending on the number of variables and on the stand used. Overall, this case study showed that, although making use of its full potential is still a challenge, TOA multi-angular radiance data do have a higher potential for variable estimation than mono-angular data.  相似文献   

2.
Future mid-infrared satellite missions exploring the Earth will feature advanced high spatial resolution and directional imaging instruments. Consistent end-to-end simulation of them is an important task, and is sometimes the only way to adapt and optimize a sensor and its observation conditions, to choose and test algorithms for data processing, to estimate errors and to evaluate the capabilities of the whole sensor system. However, contrary to other wavelength ranges, the mid-infrared is highly dependent on atmospheric scattering and emission. Therefore, simulation of atmospheric radiative transfer for remote sensing images will remain a challenging task, because few studies on this topic include a full treatment of atmospheric effects. With a given resolution and directional capabilities of the instrument, and combining with land surface temperature and emissivity data obtained from airborne imagery, TOA (top of atmosphere) radiance images have been simulated pixel by pixel, coupling the atmospheric radiative transfer analytic model extended from MODTRAN4 and the atmospheric adjacency effect model derived from point spread function (for atmospheric directional and adjacency effect). In this way, all major scattering and emission contributions of atmosphere were considered. Based on different atmospheric conditions and geometrical relations between the scene, the Sun and the sensor, simulated TOA radiance images were produced according to simulated workflows, 10-m spatial resolution and a spectral range of 3.5–3.9 μm. Analysis of results indicates that the analytic model and adjacency effect model are more suitable for mid-infrared imaging simulation than other existing models. This paper describes the principle of the two models, the applied methodology, the set-up of the actual image simulations, and then discusses the final results obtained.  相似文献   

3.
In the last few years, encouraging results using radiative transfer model inversion techniques were obtained for land biophysical variables retrieval. However, the inversion of radiative transfer models is a severely ill-posed problem that may lead to significant uncertainties in the biophysical variables estimates. Improvement of performances of the inversion process requires more information to be exploited including better radiative transfer models, exploitation of proper prior information on the distribution of canopy and atmosphere variables, knowledge of uncertainties in satellite measurements, as well as possible spatial and temporal constraints. In this study we focus on the use of coupled atmosphere-surface radiative transfer models (SMAC + SAIL + PROSPECT) to estimate some key biophysical variables from top of atmosphere canopy reflectance data. The inversion is achieved over an ensemble of pixels belonging to a spatial window where aerosol properties are supposed to be constant, and over a temporal window of few days where vegetation state is assumed not to vary. The ensemble inversion scheme accounting for the spatial and temporal constraints is described. Top of atmosphere reflectance observations are simulated for 13 bands within the visible and near infrared domains. The coupled model is inverted with a variational method implementation dedicated to solve very large inverse problems. It is based on the use of the adjoint model and a Quasi-Newton optimisation technique with BFGS update.The multitemporal-patch inversion approach exploiting the spatial and temporal constraints is compared to the classical instantaneous-local inversion applied on single pixel and date. The ‘ensemble’ approach shows significant performance improvements when retrieving aerosol optical thickness τ550 and some canopy characteristics (LAI, LAI × Cab and ALA). Conclusions are drawn on the interest of such approaches, and perspectives are given, with due attention to their applicability within operational algorithms.  相似文献   

4.
A quantitative approach has been made for the estimation of biophysical parameters of a vegetation canopy by the inversion of a vegetation canopy reflectance model. Model inversion has been done using a non-linear optimization scheme against directional reflectance data over the canopy. A quasi-Newton algorithm has been employed that searches the minimum of a function iteratively using the functional values only. The technique provides a reasonably good estimation of the biophysical parameters. A study has been conducted to quantify the error related to the estimation of biophysical parameters of vegetation with simulated satellite data corrected with improper values of atmospheric aerosol and water vapour contents. In the visible, atmospheric correction of satellite data with improper values of atmospheric aerosol content results in a modification of the amplitude and angular pattern of the directional reflectance for both low-density and high-density vegetation canopies. However, in the near-infrared, the atmospheric correction of data with improper values of aerosol and water vapour contents changes the amplitude of directional reflectance, but, no significant changes in angular pattern are noticed. This study indicates that parameter estimation can be significantly influenced by using improper values of both aerosol and water vapour contents during data correction in the visible and near-infrared regions of the solar spectrum. The estimation accuracy is higher for a low-density canopy than for a dense vegetation canopy. Retrievals of all the surface parameters are not equally affected by such improper atmospheric correction of data. Particularly, estimations of soil reflectance and leaf area index are significantly influenced by such improper correction for a high-density vegetation canopy. However, the accuracy of the retrieved parameter values is higher in the near-infrared than in the visible for both high-density and low-density canopies.  相似文献   

5.
Radiative transfer models for vegetation serve as a basis for extracting vegetation variables using directional/spectral data from modern-borne sensors (e.g., MODIS, MISR, POLDER, SeaWiFS). Only recently have significant efforts been made to provide operational algorithms to invert these models. These efforts have exposed a need to significantly improve the efficiency and accuracy of traditional methods for inverting these physically based models. In an effort to overcome the limitations of traditional inversion methods, a neural network method was designed and tested. In this study, a complex 3D model (Discrete Anisotropic Radiative Transfer, DART) was inverted for a wide range of simulated forest canopies using POLDER-like data. The model was inverted to recover three forest canopy variables: forest cover, leaf area index, and a soil reflectance parameter. The ranges of these variables were 0.4–1.0, 0.8–9.3, and 0.0–1.0, respectively. Two inversion methods were used — a traditional inversion technique using a modified simplex method, and a neural network method in combination with an exhaustive variable selection technique. A comparison of the methods' efficiency, accuracy, and stability was made. The neural network method gave relatively accurate solutions to the inversion problem given a small subset of directional/spectral data using only one to five view angles. Using only nadir data, the root mean squared error (RMSE) for the forest cover, leaf area index, and the soil reflectance parameter were 0.025, 0.23, and 0.15, respectively, and using the “best” view directions (2–5) were 0.021, 0.21, and 0.11, respectively. In general, the neural network method was more accurate than the simplex method. The results from both methods showed that the addition of directional view angles, as opposed to only a nadir view, can significantly improve the accuracy of recovering forest canopy characteristics. The traditional simplex method is computationally intensive and may not be appropriate for many operational applications on a per-pixel basis for regional and global data. The neural network method was computationally efficient and can be applied on a per-pixel basis. In general, the neural network technique had significantly lower RMSE values at the low noise levels. However, at moderate noise levels, the simplex method was equal to the neural network method in RMSE values. At high noise levels, the simplex method had significantly lower RMSE values than the neural network method. The neural network approach can provide an accurate, efficient, and stable inversion method for radiative transfer models using directional/spectral data from modern-borne sensors.  相似文献   

6.
Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified systematic unaligned sampling ranging from full spectroradiometric characterization of the canopy to conventional measurements of biochemical and biophysical variables. Airborne imaging spectrometer data (DAIS7915 and ROSIS) were acquired parallel to the ground measurements, describing the canopy reflectance of the observed forest. Coniferous canopies are highly heterogeneous and thus the transfer of incident radiation within the canopy is dominated by its structure. We demonstrated the viability of radiative transfer representation and compared the performance of two hybrid canopy reflectance models, GeoSAIL and FLIGHT, within this heterogeneous medium. Despite the different nature and canopy representation of these models, they yielded similar results. Subsequently, the inversion of a hyperspectral GeoSAIL version demonstrated the feasibility of estimating structure and foliage water content of a coniferous canopy based on radiative transfer modeling. Estimates of the canopy variables showed reasonably accurate results and were validated through ground measurements.  相似文献   

7.
Estimation of canopy biophysical variables from remote sensing data was investigated using radiative transfer model inversion. Measurement and model uncertainties make the inverse problem ill posed, inducing difficulties and inaccuracies in the search for the solution. This study focuses on the use of prior information to reduce the uncertainties associated to the estimation of canopy biophysical variables in the radiative transfer model inversion process. For this purpose, lookup table (LUT), quasi-Newton algorithm (QNT), and neural network (NNT) inversion techniques were adapted to account for prior information. Results were evaluated over simulated reflectance data sets that allow a detailed analysis of the effect of measurement and model uncertainties. Results demonstrate that the use of prior information significantly improves canopy biophysical variables estimation. LUT and QNT are sensitive to model uncertainties. Conversely, NNT techniques are generally less accurate. However, in our conditions, its accuracy is little dependent significantly on modeling or measurement error. We also observed that bias in the reflectance measurements due to miscalibration did not impact very much the accuracy of biophysical estimation.  相似文献   

8.
Detailed knowledge of light interactions between the atmosphere and vegetation, and within vegetation are of particular interest for terrestrial carbon cycle studies and optical remote sensing. This study describes a model for 3-D canopy radiative transfer that is directly coupled with an atmospheric radiative transfer model (Forest Light Environmental Simulator, FLiES). The model was developed based on the Monte Carlo ray-tracing method using some existing modeling frameworks. To integrate the canopy radiative transfer model with atmosphere, the same numerical method, sampling technique, and variance reduction technique were employed in both the atmospheric and the canopy modules. Farquhar's leaf photosynthesis model was combined to calculate the canopy level photosynthesis from the light environmental parameters obtained by the radiative transfer calculation. In order to document the quality of the coupled model, we first compared the atmospheric radiative transfer module to well known 1-D atmospheric radiative transfer models, and then evaluated the 3-D canopy radiative transfer module against a series of test cases provided by the RAMI On-line Model Checker (ROMC). We used the model to show the impact of atmospheric properties and 3-D canopy structure on the directionality of downward photosynthetically active radiation (PAR) at the top of canopy, the 3-D distribution of absorbed PAR (APAR), and overall canopy photosynthesis. The results indicate the importance to consider angular geometry of incident light at TOC and 3-D canopy structure.  相似文献   

9.
Future remote sensing satellite missions exploring the earth will feature advanced hyperspectral and directional optical imaging instruments. Given the complex nature of the data to be expected from these missions, a thorough preparation for them is essential and this can be accomplished by realistic simulation of the imagery data, years before the actual launch. Based on given spectral and directional capabilities of the instrument, and in combination with biophysical land surface properties obtained from existing imagery, the spectral and directional responses of several types of vegetation and bare soil have been simulated pixel by pixel using the radiative transfer models PROSPECT (for hyperspectral leaf reflectance and transmittance), GeoSAIL (for two-layer canopy bidirectional spectral reflectance), and MODTRAN4 (for atmospheric hyperspectral and directional effects). In this way, one obtains realistically simulated hyperspectral and directional top-of-atmosphere spectral radiance images, with all major effects included, such as heterogeneity of the landscape, non-Lambertian reflectance of the land surface, the atmospheric adjacency effect, and the limited spatial resolution of the instrument. The output of the image simulations can be used to demonstrate the capabilities of future earth observation missions. In addition, instrument specifications and image acquisition strategies might be optimized on the basis of simulated image analysis results, and new advanced data assimilation procedures could be validated with realistic inputs under controlled circumstances. This paper describes the applied methodology, the study area with the input images, the set-up of the actual image simulations, and discusses the final results obtained.  相似文献   

10.
定量获取地表植被高精度时序及空间覆盖的叶面积指数(Leaf Area Index, LAI)是生态监测及农业生产应用的重要研究内容。通过使用Moderate Resolution Imaging Spectroradiometer(MODIS)植被冠层多角度观测MOD09GA数据及叶面积指数MOD15A2数据,发展了一种参数化的叶面积指数遥感反演方法并完成了必要的检验分析。研究使用基于辐射传输理论的RossThick LiSparse Reciprocal(RTLSR)核驱动模型及Scattering by Arbitrarily Inclined Leaves with Hotspot(SAILH)模型进行植被冠层辐射特征的提取,使用Anisotropic Index (ANIX)异质性指数作为指示植被冠层二向反射分布Bidirectional Reflectance Distribution Function(BRDF)的辅助特征信息,发展了基于数据机理(Data-Based Mechanistic, DBM)的植被叶面积指数建模和估算方法。通过必要的林地、农作物、草地植被实验区反演及数值分析可得知:①时间序列多角度遥感观测数据结合数据机理的叶面积指数估算方法,可实现模型参数的时序动态更新,改进叶面积指数估算结果的时序完整性及精度。②异质性指数可以用做指示植被冠层二向反射分布特征信息,可降低因观测数据几何条件差异所导致的反演结果不确定情况,同时能够补充植被时序生长过程表现的植被结构变化等动态特征。经研究实践,可将算法应用于时空尺度的叶面积指数估算,并能够为生态、农业应用提供植被的高精度遥感监测指标。  相似文献   

11.
The potential of canopy reflectance modelling to retrieve simultaneously several structural variables in managed Norway spruce stands was investigated using the “Invertible Forest Reflectance Model”, INFORM. INFORM is an innovative extension of the FLIM model, with crown transparency, infinite crown reflectance and understory reflectance simulated using physically based sub-models (SAILH, LIBERTY and PROSPECT). The INFORM model was inverted with hyperspectral airborne HyMap data using a neural network approach. INFORM based estimates of forest structural variables were produced using site-specific ranges of stand structural variables. A relatively simple three layer feed-forward backpropagation neural network with two input neurons, one neuron in the hidden layer and three output neurons was employed to map leaf area index (LAI), crown coverage and stem density.To identify the optimum 2-band spectral subset to be used in the inversion process, all 2-band combinations of the HyMap dataset were systematically evaluated for model inversion. Field measurements of structural variables from 39 forest stands were used to validate the maps produced from HyMap imagery. Using two HyMap wavebands at 837 nm and 1148 nm the obtained accuracy of the LAI map amounts to an rmse of 0.58 (relative rmse = 18% of mean, R2 = 0.73). With HyMap data resampled to Landsat TM spectral bands and using two “optimum” bands at 840 nm and 1650 nm, rmse was 0.66 and relative rmse 21%. In contrast to approaches based on empirical relations between spectral vegetation indices and structural variables, the main advantage of the inversion approach is that it does not require previous calibration.  相似文献   

12.
Statistical and radiative-transfer physically based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of water content, such as normalized difference water index (NDWI), simple ratio water index (SRWI) and plant water index (PWI). This study conducts a radiative transfer simulation, linking leaf and canopy models, to study the effects of leaf structure, dry matter content, leaf area index (LAI), and the viewing geometry, on the estimation of leaf equivalent water thickness from canopy-level reflectance. The applicability of radiative transfer model inversion methods to MODIS is studied, investigating its spectral capability for water content estimation. A modeling study is conducted, simulating leaf and canopy MODIS-equivalent synthetic spectra with random input variables to test different inversion assumptions. A field sampling campaign to assess the investigated simulation methods was undertaken for analysis of leaf water content from leaf samples in 10 study sites of chaparral vegetation in California, USA, between March and September 2000. MODIS reflectance data were processed from the same period for equivalent water thickness estimation by model inversion linking the PROSPECT leaf model and SAILH canopy reflectance model. MODIS reflectance data, viewing geometry values, and LAI were used as inputs in the model inversion for estimation of leaf equivalent water thickness, dry matter, and leaf structure. Results showed good correlation between the time series of MODIS-estimated equivalent water thickness and ground measured leaf fuel moisture (LFM) content (r2=0.7), demonstrating that these inversion methods could potentially be used for global monitoring of leaf water content in vegetation.  相似文献   

13.
In this paper, we present an improved procedure for collecting no or little atmosphere- and snow-contaminated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The resultant time series of daily MODIS data of a temperate deciduous broadleaf forest (the Bartlett Experimental Forest) in 2004 show strong seasonal dynamics of surface reflectance of green, near infrared and shortwave infrared bands, and clearly delineate leaf phenology and length of plant growing season. We also estimate the fractions of photosynthetically active radiation (PAR) absorbed by vegetation canopy (FAPARcanopy), leaf (FAPARleaf), and chlorophyll (FAPARchl), respectively, using a coupled leaf-canopy radiative transfer model (PROSAIL-2) and daily MODIS data. The Markov Chain Monte Carlo (MCMC) method (the Metropolis algorithm) is used for model inversion, which provides probability distributions of the retrieved variables. A two-step procedure is used to estimate the fractions of absorbed PAR: (1) to retrieve biophysical and biochemical variables from MODIS images using the PROSAIL-2 model; and (2) to calculate the fractions with the estimated model variables from the first step. Inversion and forward simulations of the PROSAIL-2 model are carried out for the temperate deciduous broadleaf forest during day of year (DOY) 184 to 201 in 2005. The reproduced reflectance values from the PROSAIL-2 model agree well with the observed MODIS reflectance for the five spectral bands (green, red, NIR1, NIR2, and SWIR1). The estimated leaf area index, leaf dry matter, leaf chlorophyll content and FAPARcanopy values are close to field measurements at the site. The results also showed significant differences between FAPARcanopy and FAPARchl at the site. Our results show that MODIS imagery provides important information on biophysical and biochemical variables at both leaf and canopy levels.  相似文献   

14.
In this paper, we present a theoretical and modeling framework to estimate the fractions of photosynthetically active radiation (PAR) absorbed by vegetation canopy (FAPARcanopy), leaf (FAPARleaf ), and chlorophyll (FAPARchl), respectively. FAPARcanopy is an important biophysical variable and has been used to estimate gross and net primary production. However, only PAR absorbed by chlorophyll is used for photosynthesis, and therefore there is a need to quantify FAPARchl. We modified and coupled a leaf radiative transfer model (PROSPECT) and a canopy radiative transfer model (SAIL-2), and incorporated a Markov Chain Monte Carlo (MCMC) method (the Metropolis algorithm) for model inversion, which provides probability distributions of the retrieved variables. Our two-step procedure is: (1) to retrieve biophysical and biochemical variables using coupled PROSPECT + SAIL-2 model (PROSAIL-2), combined with multiple daily images (five spectral bands) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor; and (2) to calculate FAPARcanopy, FAPARleaf and FAPARchl with the estimated model variables from the first step. We evaluated our approach for a temperate forest area in the Northeastern US, using MODIS data from 2001 to 2003. The inverted PROSAIL-2 fit the observed MODIS reflectance data well for the five MODIS spectral bands. The estimated leaf area index (LAI) values are within the range of field measured data. Significant differences between FAPARcanopy and FAPARchl are found for this test case. Our study demonstrates the potential for using a model such as PROSAIL-2, combined with an inverse approach, for quantifying FAPARchl, FAPARleaf, FAPARcanopy, biophysical variables, and biochemical variables for deciduous broadleaf forests at leaf- and canopy-levels over time.  相似文献   

15.
Leaf chlorophyll content in coniferous forest canopies, a measure of stand condition, is the target of studies and models linking leaf reflectance and transmittance and canopy hyperspectral reflectance imagery. The viability of estimation of needle chlorophyll content from airborne hyperspectral optical data through inversion of linked leaf level and canopy level radiative transfer models is discussed in this paper. This study is focused on five sites of Jack Pine (Pinus banksiana Lamb.) in the Algoma Region (Canada), where field, laboratory and airborne data were collected in 1998 and 1999 campaigns. Airborne hyperspectral CASI data of 72 bands in the visible and near-infrared region and 2 m spatial resolution were collected from 20×20 m study sites of Jack Pine in 2 consecutive years. It was found that needle chlorophyll content could be estimated at the leaf level (r2=0.4) by inversion of the PROSPECT leaf model from needle reflectance and transmittance spectra collected with a special needle carrier apparatus coupled to the Li-Cor 1800 integrating sphere. The Jack Pine forest stands used for this study with LAI>2, and the high spatial resolution hyperspectral reflectance collected, allowed the use of the SPRINT canopy reflectance model coupled to PROSPECT for needle chlorophyll content estimation by model inversion. The optical index R750/R710 was used as the merit function in the numerical inversion to minimize the effect of shadows and LAI variation in the mean canopy reflectance from the 20×20 m plots. Estimates of needle pigment content from airborne hyperspectral reflectance using this linked leaf-canopy model inversion methodology showed an r2=0.4 and RMSE=8.1 μg/cm2 when targeting sunlit crown pixels in Jack Pine sites with pigment content ranging between 26.8 and 56.8 μg/cm2 (1570-3320 μg/g).  相似文献   

16.
Knowledge of the directional reflectance properties of natural surfaces such as soils and vegetation canopies is essential for classification studies and canopy model inversion. Atmospheric correction schemes, using various levels of approximation, are described to retrieve surface bidirectional reflectance factors (BRFs) and directionalhemispherical reflectances (albedos) from multiangle radiance measurements taken at ground level. The retrieval schemes are tested on simulated data incorporating realistic surface BRFs and atmospheric models containing aerosols. Sensitivity of the atmospherically corrected BRFs and associated directional-hemispherical reflectances to various aerosol properties and the sun-view geometry is illustrated. A measurement strategy for obtaining highly accurate surface reflectance properties also is examined in the context of instrument radiometric calibration, knowledge of the atmospheric properties, and sun-view angular coverage.  相似文献   

17.
PROSAIL is a combination of the leaf optical properties spectra (PROSPECT) model and the scattering by arbitrarily inclined leaves (SAIL) canopy bidirectional reflectance model. When modelling forest canopy reflectance using the PROSAIL radiative transfer model, the sensitivities of parameters can affect the modelling accuracy. Traditionally, sensitivities have been assessed using local sensitivity analysis (LSA); however, drawbacks to this approach include a lack of consideration for coupled effects between different parameters. In this study, parameter sensitivities in the PROSAIL model were calculated using two global sensitivity analysis (GSA) methods (the Extended Fourier Amplitude Sensitivity Test (EFAST) method and the Morris method), field measurements, and Landsat 5 Thematic Mapper (TM) data for a Moso bamboo forest. The results of GSA were compared with those of LSA in order to identify the key parameters impacting the Moso bamboo forest canopy reflectance, and to provide a reference for model optimization and vegetation canopy inversion improvement. The results showed that: (1) the sensitivities of six major input parameters of the PROSAIL model were generally consistent with the sorting orders of the two GSA methods, but were not in accordance with those from the LSA method, especially in the mid-infrared band; (2) coupled effects among parameters acting on reflectance simulation in visible light bands were greater than those in infrared bands; (3) the simulated canopy reflectance was evaluated using Landsat 5 TM data, and the results simulated based on LSA analysis showed higher error than those based on GSA analysis, because the LSA method ignored the influence of some parameters on canopy reflectance, e.g. leaf mesophyll structure (N), average leaf angle (ALA), leaf water content (Cw), and leaf dry matter content (Cm). However, GSA was able to fully consider the coupled effects among parameters, and thus identified the sensitive parameters impacting on reflectance more accurately.  相似文献   

18.
A field experiment took place in February-March 1993 to characterize the reflectance properties of four Saharan desert sites, identified from satellite imagery as having remarkably stable optical properties. The objective of the experiment was to measure reflectances so that they can be used as references for the calibration of optical satellite sensors. Bidirectional measurements of the surfaces in reflectance (and also in polarization) were collected in different planes, in the visible, near infrared, and shortwave infrared. Particular attention was given to instrumental calibration, with independent calibration experiments in the laboratory and in the field. The surface reflectance measurements were then adjusted against an empirical model of bidirectional reflectance, and converted to reflectances at the top of the atmosphere (TOA) using an atmospheric radiative transfer model. The angular dependence of these TOA reflectances, named reference reflectances, was tested against those seen by AVHRR on the four desert sites. This comparison shows that multiangular calibration of optical sensors using reference reflectances can be achieved with an accuracy better than 1 per cent.  相似文献   

19.
A model of radiative transfer in regular-clumped canopies is presented. The canopy is approximated by an array of porous cylinders located at the vertices of equilateral triangles. The model is split into two submodels, each describing a different level of structure: 1) The macrostructure submodel is based on Brown and Pandolfo (1969), who applied geometrical optics theory to an array of opaque cylinders. This model is adapted for porous cylinders and is used to derive expressions for directional interception efficiency as a function of height, radius, spacing and porosity of the cylinders. 2) The microstructure submodel makes use of the average canopy transmittance theory, applied to a cylinder, to compute the porosity of the clumps as a function of the leaf area density, the leaf inclination distribution function, the dimensions of the cylinder (height and radius), and the transmittance of green leaves in the appropriate spectral band. It is shown that, in the case of erectophile plant stands, the daily porosity of the cylinder can be approximated by the porosity calculated using the extinction coefficient of diffuse radiation. Directional interception efficiency, geometric conditions (incidence/viewing), and landscape component reflectances are used to compute hemispherical (interception, absorption, and reflectance) and directional (reflectance) radiative fluxes from simple analytical formulae. This model is validated against a data set of biological, radiative (PAR region) and radiometric (SPOT channels) measurements, collected in Niger on pearl millet (Pennisetum typhoides). The model fits the data quite well in terms of hourly and daily single-band or combined (NDVI) radiative fluxes. Close correspondence to measured fluxes, using few parameters, and the possibility of inversion makes the present model a valuable tool for the study of radiative transfer in discontinuous canopies.  相似文献   

20.
Accurate estimates of vegetation biophysical variables are valuable as input to models describing the exchange of carbon dioxide and energy between the land surface and the atmosphere and important for a wide range of applications related to vegetation monitoring, weather prediction, and climate change. The present study explores the benefits of combining vegetation index and physically based approaches for the spatial and temporal mapping of green leaf area index (LAI), total chlorophyll content (TCab), and total vegetation water content (VWC). A numerical optimization method was employed for the inversion of a canopy reflectance model using Terra and Aqua MODIS multi-spectral, multi-temporal, and multi-angle reflectance observations to aid the determination of vegetation-specific physiological and structural canopy parameters. Land cover and site-specific inversion modeling was applied to a restricted number of pixels to build multiple species- and environmentally dependent formulations relating the three biophysical properties of interest to a number of selected simpler spectral vegetation indices (VI). While inversions generally are computationally slow, the coupling with the simple and computationally efficient VI approach makes the combined retrieval scheme for LAI, TCab, and VWC suitable for large-scale mapping operations. In order to facilitate application of the canopy reflectance model to heterogeneous forested areas, a simple correction scheme was elaborated, which was found to improve forest LAI predictions significantly and also provided more realistic values of leaf chlorophyll contents.The inversion scheme was designed to enable biophysical parameter retrievals for land cover classes characterized by contrasting canopy architectures, leaf inclination angles, and leaf biochemical constituents without utilizing calibration measurements. Preliminary LAI validation results for the Island of Zealand, Denmark (57°N, 12°E) provided confidence in the approach with root mean square (RMS) deviations between estimates and in-situ measurements of 0.62, 0.46, and 0.63 for barley, wheat, and deciduous forest sites, respectively. Despite the independence on site-specific in-situ measurements, the RMS deviations of the automated approach are in the same range as those established in other studies employing field-based empirical calibration.Being completely automated and image-based and independent on extensive and impractical surface measurements, the retrieval scheme has potential for operational use and can quite easily be implemented for other regions. More validation studies are needed to evaluate the usefulness and limitations of the approach for other environments and species compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号