首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米SiO_2改性环氧树脂胶粘剂的研究   总被引:3,自引:1,他引:2  
选择纳米 SiO_2 作为增强材料改性环氧树脂基体, 以物理分散法将纳米 SiO_2 分散在环氧树脂中。通过力学性能测试和热稳定性能测试, 研究了不同含量的纳米 SiO_2 对改性环氧树脂胶粘剂的热性能、拉伸性能和冲击性能的影响; 通过 NOL环测试和扫描电子显微镜(SEM) 分析, 研究了不同含量的纳米 SiO_2 对国产芳纶纤维/改性环氧复合材料的界面性能和层间剪切强度的影响。实验结果表明, 基体树脂中当 w( 纳米SiO_2)=3%时, 改性环氧树脂胶粘剂的拉伸强度和冲击强度分别提高了 28.8%和 22.6%, 复合材料的层间剪切强度(ILSS) 达到最大值, 比未改性胶粘剂提高约 56.8%。  相似文献   

2.
采用甲苯-2,4-二异氰酸酯(TDI)改性纳米二氧化硅(SiO_2),制备表面接枝有TDI的功能化纳米SiO_2(TDI-SiO_2),再将其分散于4,4'-二苯基甲烷二异氰酸酯中,经原位聚合法制备纳米SiO_2/热塑性聚氨酯弹性体(TPU)复合材料。利用红外光谱仪、差示扫描量热仪、X射线衍射仪、扫描电子显微镜、维卡软化温度测定仪和拉力试验机等手段,表征和分析了复合材料的结构、热性能、结晶性及力学性能。结果表明,TDI成功接枝改性纳米SiO_2;纳米填料TDI-SiO_2的加入使TPU体系的微相分离程度减弱,其异相成核作用提高了TPU硬段相的结晶性能;相比纯TPU基体,复合材料抗热变形能力显著提高,当TDI-SiO_2质量分数为1%时,复合材料的维卡软化温度提高了近60℃;复合材料力学性能明显提高,与纯TPU相比,拉伸强度最大提高约24 MPa,断裂伸长率最大提高了23%,说明纳米TDI-SiO_2具有既增强又增韧的作用。  相似文献   

3.
《弹性体》2016,(5)
以二苯基甲烷二异氰酸酯(MDI)、聚四氢呋喃醚多元醇(PTMG)、羟基硅油为原料,通过预聚体法合成了一系列有机硅含量不同的改性聚氨酯预聚体,以3,3′-二氯-4,4′-二氨基二苯基甲烷(MOCA)做扩链剂,得到羟基硅油改性聚氨酯弹性体材料(PUESi)。结果表明,PUESi的羟基硅油质量分数为3%~15%时,改性效果显著。羟基硅油质量分数为3%时,常温下,PUESi拉伸强度和拉断伸长率较未改性的聚氨酯弹性体(PUE)分别提高34%和71%;在100℃时,PUESi拉伸强度和拉断伸长率保持率较PUE分别提高15%和22%,耐温性提高;具有较好的阻尼性。  相似文献   

4.
《粘接》2015,(10)
以自制的端异氰酸酯基聚丁二烯(ITPB)为基体,纳米二氧化硅(SiO_2)为固化剂,制备了ITPB型聚氨酯/纳米SiO_2弹性体。阐述了ITPB/SiO_2弹性体的制备机理,研究了溶剂的种类、SiO_2加入量和固化条件对ITPB/SiO_2弹性体力学性能的影响。结果表明,以环己酮为溶剂制备的ITPB/SiO_2弹性体力学性能最佳;随着SiO_2加入量的增加,弹性体的拉伸强度、断裂伸长率、断裂强度及硬度均有明显提高,SiO_2加入量为6%时,弹性体的断裂伸长率达到最大值220.14%,当SiO_2加入量为8%时,弹性体的拉伸强度达到最大值7.11 MPa;提高固化温度和延长固化时间,有助于提高ITPB/SiO_2弹性体的力学性能。  相似文献   

5.
聚氨酯弹性体/纳米SiO2复合材料的力学性能研究   总被引:2,自引:0,他引:2  
刘少兵  程绍娟  张颖  贾林才 《塑料工业》2008,36(2):38-40,50
采用预聚体的方法制备了聚氨酯弹性体(PUE)/纳米SiO2复合材料,通过AJ(OH)3对纳米SiO2表面改性以及超声波分散的方法来提高纳米SiO2在PUE基体中的分散性,并考查了表面处理前后的纳米SiO2对PUE/纳米SiO2复合材料力学性能的影响.结果表明:改性后的纳米SiO2能均匀分散于PUE基体中,复合材料的力学性能明显提高;纳米SiO2的用量对PUE/纳米SiO2复合材料的力学性能影响较大,并且当纳米SiO2的质量分数为2%和3%时,复合材料的拉伸强度和撕裂强度分别达到最大.  相似文献   

6.
以无水乙醇为溶剂、正硅酸乙酯(TEOS)为包覆剂对纳米Zn O表面进行无机包覆,然后用硅烷偶联剂(KH-550)对其表面进行改性,将改性后的纳米Zn O(即Zn O/Si O2/KH550)对水性聚氨酯乳液进行改性,研究了改性纳米Zn O的用量对水性聚氨酯(WPU)乳液涂膜的吸水率、吸甲苯率和拉伸性能的影响,通过傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)和水接触角测试对纳米Zn O和WPU改性前后的结构及疏水性进行了表征。结果表明,改性后的纳米Zn O粒子团聚减少,疏水性提高。当改性纳米Zn O的添加量为聚氨酯中有机物质量的0.6%时,所制备的用改性纳米Zn O改性的WPU乳液涂膜性能较好,吸水率、吸甲苯率分别为20.35%和30.50%,低于未改性的WPU;拉伸强度达到13.45 MPa,水接触角较未改性WPU涂膜提高了25°。  相似文献   

7.
用聚氨酯(PU)弹性体/纳米SiO2复合材料协同改性聚氯乙烯(PVC),用反应挤出一步法成型工艺制备了PU弹性体/纳米SiO2/PVC复合材料,对挤出速率和温度进行了考察,并对复合材料力学性能的影响因素进行了研究。结果表明,制备该复合材料的最佳工艺条件是螺杆转速为40~50r/min、挤出机均化段温度为180~190℃;用分散于液化二异氰酸酯中的纳米SiO2制备的复合材料的性能优于用分散于聚醚二元醇中的纳米SiO2;PU弹性体和纳米SiO2能协同增韧PVC,两者质量比为5/1时增韧改性的效果最佳。当PU弹性体/纳米SiO2/PVC(质量比)为5/1/20时,复合材料的综合力学性能最优,冲击强度达到45.6kJ/m2,拉伸强度为50.3MPa。  相似文献   

8.
《塑料科技》2021,(1):75-79
分别采用正辛基三乙氧基硅烷、正十二烷基三甲氧基硅烷对纳米SiO2晶须表面接枝改性,并制备了改性PP/nano-SiO2复合材料,探讨了偶联剂种类与复合材料性能间的关系。研究发现:改性PP/nano-SiO2复合材料弯曲强度、拉伸强度和弯曲模量略低于未改性的PP/nano-SiO2复合材料,但冲击强度和断裂标称应变更优;改性PP/nano-SiO2复合材料具有更好的耐磨性能和耐刮擦性能;正十二烷基三甲氧基硅烷改性纳米SiO2能够明显提高复合材料的热变形温度,且耐刮擦性能和耐磨性能优于正辛基三乙氧基硅烷改性纳米SiO2和未改性SiO2,能够在车用内饰件领域得到更好的应用。  相似文献   

9.
制备了无规共聚聚丙烯(PPR)/纳米TiO2复合材料,并研究了热处理对复合材料力学性能和断口形貌的影响。结果表明:使用4%(w)经硅铝复合包膜改性后的纳米TiO2可大幅提高PPR的力学性能,复合材料的拉伸强度由未改性的24.0 MPa提高到36.5 MPa,断裂伸长率由未改性的45%提高到90%;热处理可消除复合材料内部热应力,促进结晶的完善,有效改善PPR/纳米TiO2复合材料的拉伸性能及弯曲性能,热处理最佳温度为120℃,最佳时间为40 min,在此条件下,复合材料的拉伸强度及弯曲强度增幅分别达33.8%,35.9%。  相似文献   

10.
将纳米二氧化硅(SiO_2)加入到丙烯腈-丁二烯-苯乙烯共聚物(ABS)/热塑性聚氨酯(TPU)二元体系中,制备纳米SiO_2增强的ABS/TPU三元复合材料,通过傅里叶红外光谱(FTIR)、扫描电镜(SEM)、热变形温度(HDT)、冲击性能和线性尺寸收缩率测试等研究不同含量SiO_2对ABS/TPU合金耐热性和力学性能影响。结果表明,ABS/TPU复合材料的熔体流动速率随着纳米SiO_2含量的增加而呈下降。SiO_2-ABS/TPU复合材料的拉伸强度和断裂伸长率与ABS/TPU合金没有明显的差异,而复合材料的冲击强度有较大提高,当SiO_2含量为2%时,复合材料的冲击强度达到最大值,较ABS/TPU提高了65. 5%。热性能分析表明,SiO_2的加入使复合材料的热变形温度和维卡软化温度提高,线性尺寸收缩率降低,提高了复合材料的热稳定性,克服了ABS作为3D打印耗材的收缩易变脆、易翘曲的缺点。  相似文献   

11.
刘佳慧  赖小娟  王磊  张引引 《精细化工》2019,36(6):1076-1083
以聚己内酯二元醇(PCL)、甲苯二异氰酸酯(TDI)、甲基丙烯酸甲酯(MMA)为主要原料,合成水性聚氨酯-丙烯酸酯乳液(WPUA)预聚体。将偶联改性的纳米SiO_2与氧化石墨烯进行接枝后,与聚氨酯-丙烯酸酯乳液预聚体进行原位聚合,用自乳化法制备了经功能化石墨烯改性的无胺型水性聚氨酯-丙烯酸酯复合乳液(SiO_2-NH_2-GO/WPUA),对功能化石墨烯的用量进行讨论,并对其复合乳液、胶膜结构及性能进行测试。与水性聚氨酯-丙烯酸酯(WPUA)相比,SiO_2-NH_2-GO/WPUA具有更好的耐温性及胶膜性能,当氧化石墨烯接枝SiO_2(SiO_2-NH_2-GO)质量分数为0.75%时,复合乳液胶膜较未改性乳液胶膜相比,热分解温度提高14.51℃;拉伸强度提高到81.28 MPa;该复合乳液配制的胶黏剂在铝箔/PVC薄膜的T-剥离强度达到15.4 N;易氧化物含量指标符合药品包装容器标准,表明该水性聚氨酯胶黏剂适用于医药包装。  相似文献   

12.
尼龙6/纳米三氧化二锑性能的研究   总被引:1,自引:0,他引:1  
采用等离子体法生产的纳米三氧化二锑制备阻燃尼龙6(PA6),并通过氧指数(LOI)、锥形量热及TEM等检测,研究了纳米三氧化二锑对PA6阻燃性能和力学性能的影响。结果表明,当纳米三氧化二锑质量分数为6%时,LOI可达30%;热释放速率峰值减小了60 kW/m2,且达到峰值的时间较纯PA6延迟了约2 min;硅烷偶联剂KH-550改性的纳米三氧化二锑在PA6中的弥散度比未改性的高。与未改性纳米三氧化二锑相比,经过表面改性后,材料的拉伸强度提高60.7%、缺口冲击强度提高14.8%、弯曲强度提高36.8%、弯曲模量提高39.6%。  相似文献   

13.
将预分散的纳米氢氧化镁[Mg(OH)2]加入聚氨酯弹性体(PUE)反应体系进行原位聚合。由于预聚物粘度的影响,纳米粒子的最大添加量为5%(质量分数)。力学测试表明,所得Mg(OH)2/聚氨酯弹性体纳米复合材料的力学性能较纯PU有较大提高。复合材料置于60℃的水中3周后,拉伸强度保留93%。XRD测试显示复合材料中无明显结晶。氧指数(IO)测定显示,纳米Mg(OH)2的加入,可明显提高复合材料的难燃性能、当其质量分数为5%时,氧指数可达31。  相似文献   

14.
以高密度聚乙烯(HDPE)为基体、玄武岩纤维(BF)为增强材料,通过熔融共混、注塑成型制备了HDPE/BF复合材料,对比研究了未改性和硅烷偶联剂KH550改性对复合材料性能的影响,探究了不同BF含量对复合材料的热稳定性、导热性、加工流动性和力学性能的影响。结果表明:改性BF表面存在KH550分子,含改性BF的复合材料的各项性能均优于含未改性BF的复合材料;含10 wt%改性BF的复合材料使其流动速率提高了约65%,改性BF使HDPE的熔融温度最大提高了约3℃,但大幅降低了HDPE的结晶性能;含30 wt%改性BF的复合材料导热系数为0.364 2 w/mK,比纯HDPE提高了17%。改性BF可以有效提高复合材料的力学性,尤其是15%含量时缺口冲击强度提升了65%。未改性BF对HDPE性能也有提高,但提升幅度均低于改性BF。  相似文献   

15.
《粘接》2016,(8)
采用γ-氨丙基三乙氧基硅烷(APTES)改性的有机化纳米SiO_2和2,2,3,4,4,4-甲基丙烯酸六氟丁酯(HFBMA)对水性聚氨酯改性,制备了改性水性聚氨酯(SiO_2/FWPU)复合胶粘剂。研究结果表明,当APTES用量为纳米SiO_2用量的50%、改性温度为35℃、反应时间为7 h,改性纳米SiO_2具有较好的改性效果,可用于WPU的改性。采用粒度分析仪、数字黏度计、拉力试验机、热重分析仪等仪器进行表征,研究了纳米SiO_2对SiO_2/FWPU的乳液性能、胶膜性能及其对非极性膜粘接性能的影响,研究发现,随着改性纳米SiO_2用量增加,乳液的稳定性降低,胶膜拉伸强度先增大后减小,断裂伸长率则不断减小。纳米SiO_2可提高胶粘剂的耐热性能,使胶粘剂在高温蒸煮条件下仍有很好的粘接性能。当纳米SiO_2用量为1.0%时,SiO_2/FWPU复合胶粘剂的综合性能最好,能满足复合软包装袋的需要。  相似文献   

16.
《塑料科技》2016,(3):40-44
对纳米SiO_2连续进行两步法改性,首先接枝PEG400,然后共聚自制低分子量PET,采用NMR、热失重仪、X射线光电子扫描仪对其结构进行了表征。采用熔融混合法分别制备了未改性纳米SiO_2、两种改性纳米SiO_2、低分子量PET与PET树脂的复合材料,利用SEM、毛细管流变仪对复合材料的性能进行了研究。结果表明:PEG400成功接枝到纳米SiO_2粉体表面,且自制低分子量PET共聚到了一元接枝纳米SiO_2上;改性后的纳米SiO_2粉体在PET树脂中的分散性得到改善;纳米SiO_2粉体通过PEG400和低分子量PET改性后可提高PET树脂的表观黏度,改善PET树脂的脆性。  相似文献   

17.
纳米SiO2对EP/国产芳纶Ⅲ纤维复合材料性能的影响   总被引:1,自引:0,他引:1  
选择纳米SiO2作为增强材料改性环氧树脂(EP)基体,与国产芳纶Ⅲ纤维缠绕成复合材料。研究了不同含量的纳米SiO2对EP基体拉伸性能和冲击性能的影响;通过NOL环复合材料剪切强度测试和纤维缠绕Φ150mm容器水压爆破实验,研究了不同含量纳米SiO2对EP/国产芳纶Ⅲ纤维复合材料层间剪切强度和纤维强度转化率的影响。结果表明,EP基体中纳米SiO2质量分数为3%时,对基体拉伸和冲击性能均有显著改善,拉伸强度和冲击强度分别提高28.8%和22.6%,EP/国产芳纶Ⅲ纤维复合材料的层间剪切强度达到最大值,比未改性配方高出约56.8%;Φ150mm容器水压爆破结果表明,纳米SiO的加入使纤维强度转化率平均提高7%以上。  相似文献   

18.
采用粒径为200~300 nm的纳米二氧化硅(Nano-SiO2)作为填料,制备了聚氨酯/纳米二氧化硅(PU/Nano-SiO_2)复合材料。利用透射电镜(TEM)观察了Nano-SiO_2的微观结构,通过扫描电镜(SEM)、力学性能测试、线性膨胀系数测试和阻尼系数测试分析研究了PU/Nano-SiO_2复合材料的形貌、力学性能和阻尼吸声特征。结果表明:Nano-SiO_2粒子使复合材料的孔径减小,孔径分布更为均匀;随着Nano-SiO_2用量的增加,复合材料的拉伸强度显著升高;复合材料的线性膨胀系数及阻尼吸声系数随着Nano-SiO_2用量的增加而增大,当SiO_2的用量为5份时,复合材料的吸声系数达到90%,阻尼效果改善较为明显。  相似文献   

19.
纳米级碳酸钙、二氧化硅、二氧化钛、粘土等材料用于聚合物的改性已取得不少的技术突破 ,一些厂家已成功制备了各种纳米聚合物复合材料。与普通改性聚合物相比 ,纳米改性材料的物性及加工性能都有较大提高。广州新力聚氨酯制品厂已开发成功纳米改性聚氨酯弹性体。该厂研制的有机或无机纳米材料增强的聚氨酯弹性体 ,具有高强度、高耐磨性及耐高温性能好的特点。例如在1 40℃下其 1 0 0 %及 30 0 %定伸强度仍能达到常温时时的 70 %左右。它的工作温度可比普通聚氨酯弹性体高 30~ 50℃ ,可用于高温高压聚氨酯密封圈、石油钻井泥浆泵皮碗、纺织…  相似文献   

20.
以甲苯-2、4-二异氰酸酯(TDI)、聚四氢呋喃醚二醇-1000(PTMG)以及3,3-二氯-4,4-二苯基甲烷二胺(MOCA)为合成原料,并采用预聚法合成浇注聚氨酯弹性体。选用纳米Ca CO_3粒子颗粒对聚氨酯弹性体改性研究,并且以微米级Si_3N_4粒子作为参照组,对两类复合材料试样进行了机械性能和磨损性能的测试。实验结果表明:纳米Ca CO_3粒子改性纯PU弹性体的复合材料力学性能有一定的提高,并且纳米Ca CO_3粒子质量分数达到1%时,其力学性能最佳;纳米Ca CO_3/PU弹性体复合材料综合力学性能和磨损性能要比微米Si_3N_4/PU弹性体复合材料好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号