首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了 60 mm Q345B碳钢/10 mm 304不锈钢复合板坯在1 200℃仅加热不轧制及进行2倍压缩比轧制后30 mm Q345/5 mm 304复合界面Cr、Ni的扩散行为.试验结果表明,加热过程中,界面是否贴合并未影响扩散的进行,真空状态下不锈钢侧Cr、Ni发生蒸发逸出不锈钢并向碳钢侧发生了扩散,Cr扩散距...  相似文献   

2.
采用拉拔-钎焊的方式制备不锈钢/碳钢复合管,应用金相显微镜观察钎焊后复合界面的微观形貌,实验测试了钎焊温度和保温时间对复合强度的影响。研究发现,钎焊后金属间形成致密的冶金结合,随钎焊温度增加,金属间的剪切强度提高,当温度大于1150℃时,剪切强度从295MPa缓慢增加,随钎焊保温时间剪切强度呈先增大后降低规律。保温3h时剪切强度最大为301MPa。  相似文献   

3.
在扩散温度900℃、压力15MPa、保温时间分别为1h、1.5h、2h的工艺参数下,采用厚度0.2mm的纯镍箔片对钨和316L奥氏体不锈钢进行真空扩散连接。试验结果表明,316L与镍扩散层结合紧密,随着保温时间的增加,Ni(Fe,Cr)固溶体厚度增加;在W/Ni扩散界面上,当保温时间为1.5h和2h时,除了生成Ni(W)固溶体之外,同时生成了Ni4W金属间化合物。随着保温时间的延长,Ni4W由弥散分布状态生长为了具有一定厚度的连续层状。在剪切试验中,断裂发生在钨基体以及W/Ni扩散层。在保温时间由1h增加到1.5h时,剪切强度由182MPa提高到286MPa,当增加到2h时,剪切强度降到了220MPa。  相似文献   

4.
为了研究推/张力(0~15 MPa)对不锈钢(Cr18Ni8,2 mm壁厚管)/碳钢(0.06%~0.12%C,Φ16 mm,圆棒)复合钢筋轧制过程的影响,应用有限元软件Msc.Marc建立了复合钢筋轧制过程的有限元模型。通过模拟考察了推/张力对不锈钢/碳钢复合钢筋的宽展变形,结合面的接触应力和不锈钢圆周壁厚的影响,重点通过实验考察了推力轧制对两金属结合强度的影响。结果表明,施加张力后轧件宽展量减小,而施加推力后其值增加;不锈钢壳与碳钢芯间的接触应力随推力的增加、张力的降低而增大。推力轧制有利于两金属的复合,可以提高复合不锈钢和碳钢芯的结合强度。  相似文献   

5.
对540 MPa断裂时间小于100 h的真空感应炉冶炼+电渣重熔(Φ600 mm锭)+锻造成材工艺生产的90 mm×90 mm 1Cr11Ni2W2MoV钢分析表明:钢中回火马氏体组织含量不足及马氏体板条间碳化物析出不均匀是导致钢材强度及韧性偏低进而导致持久性能断裂时间小于100 h的原因,通过将锻坯加热温度由1130~1150℃降低到1000~1020℃,锻造90 mm×90 mm钢材的锻造方式由一火次成材变为两火次成材,终锻温度≥900℃,持久性能试样的回火温度由660~680℃降低到600~620℃,使1Cr11Ni2W2MoV钢540 MPa持久性能断裂时间从36~37 h提高到146~148 h。  相似文献   

6.
使用金属熔覆和热轧的方法成功制备了覆层为Cr13不锈钢的复合钢筋。通过有限元数值模拟发现,在粗轧区域的高温变形过程,塑性应变主要集中在轧件表层和1/4位置,芯部的变形较表层偏小,随着变形的不断进行,塑性应变不断向碳钢芯部渗透。复合钢筋在成品机架K1变形时,不锈钢全部包裹在碳钢上,但是在横断面的不锈钢覆层厚度分布不均匀,在复合钢筋横肋根部的不锈钢覆层厚度最薄,在横肋顶部的不锈钢覆层厚度最厚。复合钢筋的开轧温度为1 130℃,精轧温度为1 000℃。复合钢筋成品的界面结合良好,达到了冶金结合状态,在界面处Cr的扩散层厚度达到了32μm。复合钢筋成品的各项力学性能均达到了国标要求。  相似文献   

7.
为研究拉拔工艺对不锈钢/铜/碳钢复合管复合效果的影响,建立了三金属管拉拔过程的有限元模型,考察推/张力和拉拔速度对金属间接触应力、拉拔力的影响。研究发现,拉拔工艺对三金属复合有较大影响,当推力为-10MPa时不锈钢表面的接触应力达最大值320MPa,铜层和碳钢层都处于较大值,分别为272MPa,302MPa。拉拔速度大于200mm/s以上时,不锈钢、铜、碳钢表面的接触应力趋于最大稳定值,分别为390MPa、360MPa、347.5MP.  相似文献   

8.
采用扩散焊接工艺制备铜/钨铜/铜热沉复合材料,研究了焊接温度、保温时间、焊接压强对焊接界面结合强度和界面扩散的影响,当焊接温度为980℃、保温时间为4h、压强为55MPa时,铜/钨铜/铜热沉复合材料的界面结合强度最大,说明此时扩散复合的效果最好,焊接接头质量最高。  相似文献   

9.
GCr15轴承钢(/%:0.95~1.05C,0.20~0.30Si,0.30~0.40Mn,1.40~1.50Cr)300 mm×400 mm连铸坯的生产流程为120 t BOF-LF-RH-CC-连轧至Φ60 mm材。生产试验了连铸坯1 180~1 260℃高温扩散时间4.5~24 h对Φ60 mm热轧材碳化物带状的影响。结果表明,随保温时间的增加,热轧材带状级别降低,当保温时间为4.5~6.5 h、6.5~10 h和≥13 h时,Φ60 mm材的带状级别分别达2.5级、2.0级和1.5级。可根据不同带状级别要求,设定相应的保温时间。  相似文献   

10.
余雷  田浩  李博鹏 《特殊钢》2018,39(3):51-53
GCr15轴承钢(/%:0.95~1.05C,0.20~0.30Si,0.30~0.40Mn,1.40~1.50Cr)300 mm×400 mm连铸坯的生产流程为120 t BOF-LF-RH-CC-连轧至Φ60 mm材。生产试验了连铸坯1 180~1 260℃高温扩散时间4.5~24 h对Φ60 mm热轧材碳化物带状的影响。结果表明,随保温时间的增加,热轧材带状级别降低,当保温时间为4.5~6.5 h、6.5~10 h和≥13 h时,Φ60 mm材的带状级别分别达2.5级、2.0级和1.5级。可根据不同带状级别要求,设定相应的保温时间。  相似文献   

11.
摘要:海洋工程用带肋钢筋要求有耐氯离子腐蚀能力,但选用双相不锈钢生产成本过高,不锈钢 碳钢轧制复合钢筋则可兼顾耐蚀性和低成本。覆层采用2205不锈钢,基材为低合金钢20MnSi,用有限元方法模拟钢筋的热轧复合过程,分析轧制过程尤其是成品孔中轧件的变形规律。有限元仿真发现,矩形组合坯料无孔型轧制时,其角部复合困难,而成品孔轧制时,钢筋横肋根部的应变最大,覆层在此位置减薄显著,应选择合适的复合坯覆层厚度。在实验室采用焊接、真空处理和热轧方法制备了直径为16mm的复合钢筋,屈服强度为485MPa,抗拉强度为701MPa,断后伸长率约为37.1%,复合界面剪切强度为317.5MPa。复合钢筋呈良好的冶金结合,Fe和Cr的扩散层厚度约为40μm。该工艺生产的复合带肋钢筋成本较不锈钢降低50%以上。  相似文献   

12.
真空热轧法制备不锈钢复合板组织和力学性能   总被引:2,自引:0,他引:2  
 为了研究轧制温度对复合板界面结合强度的影响,采用真空热轧法制备了不锈钢复合板,利用OM、EPMA观察分析了不锈钢复合板界面组织和合金元素扩散。结果表明,碳钢中碳、铁元素向不锈钢扩散,不锈钢中铬、镍等元素向碳钢扩散,界面处出现Si-Mn-O三元化合物,合金元素扩散随轧制温度的升高而趋于严重。远离界面碳钢的组织为铁素体和珠光体组织,靠近界面碳钢的组织为铁素体组织。碳钢至界面处硬度先减小后升高,界面至不锈钢内部硬度先升高后下降,距界面约40 μm碳钢侧的维氏硬度值最低约为121.8HV,距界面约20 μm不锈钢侧的维氏硬度值最高约为245.5HV。从1 100到1 300 ℃,剪切强度随轧制温度的升高而升高,1 300 ℃轧制获得的界面剪切强度为463 MPa,远远超过基体的剪切强度。  相似文献   

13.
航天级铝合金热管对装配连接提出了大功率高热流密度散热要求,传统胶接方式存在使用寿命短,可靠性差等缺点难以满足要求,针对铝合金热管进行了低温装配金属键连接试验研究。采用新型中间层材料成功的实现了6061铝合金的低温扩散钎焊。通过扫描电镜(SEM)和能谱分析(EDS)对接头微观组织和成分进行分析。结果表明,中间层镓和铜通过相互扩散形成了新相CuGa2;对保温温度为80℃、扩散时间分别为5 h/10 h/20 h的接头组织进行观察,发现扩散时间越长,镓和铜相互扩散越充分,中间层中残留的铜和镓越少,形成的接头组织越均匀致密;对界面传热系数和耐温性能进行了测试,结果表明金属键连接有很高的传热系数达到82362 W·(m2·K)-1,充分满足航天级热管大功率高热流密度散热要求;接头的耐温温度达到300℃,在300℃时,接头没有出现任何液化和重熔现象;最后通过对铝合金低温扩散钎焊过程的分析探讨了其中间层的扩散机制。  相似文献   

14.
通过楔形轧制及Gleeble热变形模拟试验,研究了焊接用不锈钢H0Cr21Ni10和H1Cr24Ni13的热塑性。H0Cr21Ni10的最佳塑性变形温度为900~1050℃,H1Cr24Ni13为850~1000℃,定量金相分析表明,在这样的温度下奥氏体基体中铁素体含量最少。采用偏低的加热温度、适当的保温时间和小变形量、多道次的工艺制度可以明显改善这两种不锈钢的热加工性能。  相似文献   

15.
李壮  吴迪  齐瑞贵 《特殊钢》2008,29(1):37-39
易切削奥氏体不锈钢(%:0.09~0.10C、0.80~0.82Si、0.40~0.43Mn、0.08~0.09P、0.10~0.11S、9.14~9.20Ni、18.12~18.30Cr、0.73~0.78Ti)由30 kg真空感应炉冶炼,Φ450 mm轧机经8道次开坯成75 mm×75 mm坯。当钢锭加热温度1200℃,1~4道次(1150~1060℃)轧制未出现开裂,5~8道次(950~770℃)轧制钢坯出现严重表面裂纹。扫描电镜与能谱分析表明,钢中夹杂物为硫化锰-硫化铁复合夹杂物。通过将1~8道次开坯温度控制在1150~1060℃时,有效地避免了钢坯表面开裂的发生。  相似文献   

16.
以厚度≤1 mm的Cr,Ni混合粉做中间层,在焊接温度为1650℃,真空度(3.0~4.0)×10-2 Pa,保温时间1~2 h,加压0.1 MPa条件下对钼和石墨进行扩散焊接。通过扫描电子显微镜观察焊接试样接口组织形貌,用其附带的能谱仪进行化学成分分析,用X射线衍射仪进行物相分析。并分析焊接过程中的界面反应,认为实验条件下的焊接过程与瞬间液相扩散焊(TLP)焊接机制相一致,包括中间层的熔化(或溶解)、母材溶解和迁移、等温凝固、固相成分均匀化4种相变过程,靠近母材部分界面反应遵循快速通道扩散机制,整个焊接层组元浓度梯度与薄膜源扩散模型相一致。中间层与母材元素反应形成的最终产物包括Cr3C2,Cr7C3及Mo2C等Ni以单质形式弥散其中,最终形成不同成分粒状组织,一定程度上阻止了脆性相中的裂纹扩展。石墨基体中也明显有含合金元素的新相生成,有利于实现基体与中间层的连接。  相似文献   

17.
为了优化热静压扩散连接工艺参数,应用有限元法对Be/HR-1不锈钢扩散连接界面附近铁和铍元素的分布进行了计算机模拟,并通过俄歇电子能谱(AES)进行实验测定。结合计算机模拟结果和实验数据探讨了扩散连接界面附近铁和铍元素的分布、扩散宽度与温度、压力和时间的关系。结果表明:在1050℃/60 MPa/2 h和750℃/60 MPa/2 h热静压下,扩散连接界面附近Be,Fe元素分布的实测数据与计算机模拟结果基本吻合;在60 MPa/2 h热静压下,加热温度分别为1050和750℃时对扩散宽度影响的实测数据与计算机模拟结果基本吻合,1050℃时的扩散宽度是750℃时的2.5倍;在750℃/2 h热静压下,压力分别为30,40,50,60 MPa时对扩散宽度影响的实测数据与计算机模拟结果基本吻合,扩散宽度与压力成抛物线关系;在750℃/60 MPa热静压下,扩散宽度与扩散时间的模拟曲线也成抛物线关系。  相似文献   

18.
大规格高强度钢筋轧后余热处理工艺探讨   总被引:1,自引:0,他引:1  
王伟  尚成嘉 《山东冶金》2005,27(5):38-40
采用20MnSi连铸坯、轧后余热处理工艺生产的大规格(Φ40mm)钢筋外层厚度2.0—3.4mm,过渡层厚度1.7-3.5mm,屈服强度不小于530MPa,抗拉强度不小于610MPa,符合BS4449标准460MPa级钢筋的要求。钢筋的金相组织:外层,回火索氏体;过渡层,索氏体+珠光体+铁索体+贝氏体;心部,贝氏体+珠光体+铁索体。试验选定的加热温度为1080-1100℃,终轧速度3.4—3.7m/s冷却方式是管内流水冷却,冷却水量500~660m^3/h,水压0.40-1.0MPa。  相似文献   

19.
利用扫描电子显微技术结合能谱分析对316L/Q345R热轧复合板结合界面组织及元素扩散情况进行了检测,通过热力学计算分析了界面附近碳的分布规律,并测量了结合界面的显微硬度与剪切强度。结果表明,结合界面碳钢一侧存在约50μm的铁素体带,而不锈钢侧存在约100μm的元素扩散影响区;不锈钢中铬、镍等元素向碳钢中扩散,碳钢中碳元素向不锈钢中扩散;复合板界面剪切强度为373 MPa,明显高于标准规定的210 MPa,略低于Q345R与316L剪切强度和的1/2(379 MPa)。  相似文献   

20.
研究了1000~1200℃ 1~3 h固溶、淬火或空冷对超低碳奥氏体不锈钢00Cr24Ni13(/%:≤0.02C、23~25Cr、13~14 Ni)200 mm×1 250 mm铸坯8铁素体转变的影响。结果表明,随固溶温度升高和保温时间延长铸坯中δ铁素体量减少;随固溶温度的升高,铸坯中的连续网状δ铁素体断开并且长大,空冷则会促使高温下长大的δ铁素体向小尺寸颗粒状组织转变;当铸坯试样在1 200℃保温3 h空冷后,网状δ铁素体完全转变成弥散分布的小于10μm的颗粒状铁素体组织,δ铁素体相比例也由14.3%降至7.3%。相对于颗粒状铁素体,网状δ铁素体的奥氏体-铁素体两相界面在轧制中更容易产生裂纹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号