首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
825高温合金325 mm×280 mm电极(/%:〈0.01C,0.21Si,0.40Mn,0.020P,0.003S,22.5Cr,39.1Ni,3.0Mo,2.1Cu,1.17Ti,0.17Al)经气体保护抽锭式快速电渣重熔成160 mm×160mm 1.8t电渣锭。试验研究了CaF_2-CaO-Al_2O_3基础渣加TiO_2,TiO_2-MgO或TiO_2-SiO_2以及熔速(300~500 kg/h)对825合金重熔锭表面质量和Ti烧损的影响。结果表明,渣中含少量SiO_2的CaF_2-CaO-Al_2O_3-TiO_2-SiO_2五元渣系,重熔速率为400 kg/h时,可以明显改善825合金电渣锭的表面质量,同时可以抑制Ti的烧损。  相似文献   

2.
试验和分析了全封闭气罩氩气保护电渣重熔与常规大气下电渣重熔铁路用G20CrNi2MoA渗碳轴承钢(/%:0.19C、0.49Cr、1.75Ni、0.23Mo、0.071Al)的冶金效果。结果表明,氩气保护电渣重熔锭Si和Mn的烧损量(3%~12%和4%~10%)低于常规电渣重熔锭Si和Mn的烧损量(15%~18%和7%~10%);当G20CrNi2MoA钢电极的氧含量为10×10-6时,氩气保护电渣锭的氧含量(15×10-6)低于常规电渣锭的氧含量(21.3×10-6);氩气保护电渣锭的冶金质量明显优于未经气体保护的常规电渣锭。  相似文献   

3.
研究了 1 t电渣锭重熔过程未加电磁搅拌和6 Hz,50 - 200 A电磁搅拌对GH4169合金(/% :0.04C, 0.21Si,0.05Mn,52. 85Ni,19. 8OCr,5.20Nb,3.05Mo,0.55A1,1.02Ti)凝固组织的影响。结果表明,电磁搅拌可以显 著细化合金晶粒,增大等轴晶比率,降低二次枝晶间距;但当搅拌电流N100 A时,电渣锭的共晶组织增多,降低了 电渣锭的塑性;当电流为50 A,频率为6 Hz时,等轴晶比例最高,二次枝晶间距最小,电渣锭中心位置Laves相含量 最低,合金中共晶组织最少,合金塑性最好。  相似文献   

4.
叶片钢1Cr12Ni2Mo2VN电极坯母材(/%:0.10C,0.24Si,0.81Mn,0.013P,0.002S,11.75Cr,2.63Ni,1.70Mo,0.32V,0.033N)的生产流程为30 t EAF-VOD-LF-2.67 t铸锭-退火-Φ250 mm锻坯。通过将ANF-6二元渣改成高纯度、低杂质NEUD06预熔四元渣,平均熔速由5.27 kg/min降低至3.5~4.0 kg/min等工艺措施,成功地生产出Φ430mm叶片钢1Cr12Ni2Mo2VN电渣锭(/%:0.10~0.12C,0.75~0.86Mn,0.21~0.24Si,0.011~0.014P,0.0001S,11.76~11.82Cr,2.54~2.61Ni,1.63~1.71Mo,0.31~0.32V,0.039N)。检验结果表明,电渣锭的组织为马氏体+0.5%~1.5% δ-铁素体,非金属夹杂物总和为1.5~2.0级,[O]15×10-6~17×10-6,[H]1.24×10-6~1.47×10-6,保证了电渣钢的质量。  相似文献   

5.
进行常规大气条件1.2 t电渣炉和氩气保护气氛5.0 t电渣炉重熔1 Cr18Ni9Ti奥氏体不锈钢[/%:0.05~0.09C,17.13~18.24Cr,9.73~10.6Ni,5×(C-0.02)~0.80Ti]的生产试验,分析氩气保护气氛对钢中钛烧损的影响。结果表明,在70CaF_2-30Al_2O_3二元提纯渣配加5.0%TiO_2的条件下,常规大气条件1.2 t电渣重熔锭平均钛烧损率为48.33%;氩气保护气氛5.0 t电渣重熔锭平均钛烧损率为2.61%;同时5.0 t电渣炉重熔时除用氩气保护气氛外采用同钢种底垫固渣引燃,钢锭底部涨[C]现象得到明显改善。  相似文献   

6.
M2高速钢(/%:0.86C,0.39Si,0.32Mn,0.015P,0.006S,6.00W,4.00Cr,4.80Mo,1.85V)Φ183 mm圆坯由2.0 t电渣锭(Φ500 mm)锻制而成。M2钢锻坯探伤缺陷率为33.33%~69.23%,主要为中心部位针孔缺陷。分析表明,针孔缺陷是钢锭偏析部位在开坯加热和锻制过程中产生过热形成的。通过将电渣重熔电流由8 000→6 800 A降至7 000→6 000 A,降低电渣重熔速度,开锻温度由1070~1090℃降至1030~1060℃,终锻温度由960~980℃C降至900~950℃以降低中间坯的中心温度等工艺措施,使M2钢 Φ183 mm锻坯的探伤缺陷率由50%降低到5.71%。  相似文献   

7.
《特殊钢》2017,(3)
NS1402合金(/%:0.01C,0.15Si,0.34Mn,0.004P,0.004S,22.33Cr,40.07Ni,3.22Mo,2.29Cu,0.87Ti,0.11Al,30.6Fe)7.85 t电渣重熔用40 t EAF+VOD冶炼的电极棒凝固收缩过程中容易产生严重的缩孔缺陷。借助商业软件CAD,GEOMESH和MeshCAST,建立了该电极棒的充型和凝固模型,得出模拟中心缩孔直径为248 mm,与实测值比较,相对误差为4.6%。结果表明,将电极棒倒置可以减小缩孔直径32.2%;随着绝热板长度的增加,缩孔减轻,将绝热板长度增加200 mm,可以基本消除冒口下的缩孔。  相似文献   

8.
丁磊  贾景岩 《特殊钢》2021,42(2):52-55
气阀钢NCF3015 Φ280 mm×1700 mm电极(/%:0.03~0.08C,13.5~15.5Cr,30~33.5Ni,1.7~2.1Al,2.4~2.9Ti,0.65~0.80Mo,0.65~0.80Nb,0.002~0.006B)经全同轴式惰性气体保护电渣重熔成Φ340 mm0.80 t电渣锭。在使用三元预熔渣70CaF2-15Al2O3-15CaO以熔速为4 kg/min的全氩气保护条件下,试验了气阀钢NCF3015电渣过程中Al、Ti烧损的烧损量及Si的变化情况和脱S率,并阐述了机理。结果表明,Al相对Ti是主要的烧损元素,Al的平均烧损量为-0.071%,Ti的平均烧损量为-0.035%。从底部至顶部Al,Ti的烧损都逐渐减小,与常规电渣重熔烧损率相比,氩气保护对减小Al,Ti的烧损作用显著。Al、Ti的烧损导致重熔初期Si含量略增。该渣系有一定的脱硫效果,平均脱S率36.7%。  相似文献   

9.
根据TWIP钢裂纹敏感性强和高洁净度要求,通过分析和计算,采用65CaF2-25Al2O3-10CaO渣,AOD精炼的2根0.6 m直径7.3 t电极(/%:0.03C,2.75Si,25.13Mn,0.019P,0.002S,2.50Al),重熔14 t TWIP钢电渣锭(/%:0.03C,2.88Si,24.71Mn,0.021P,0.007S,2.98Al)。检验结果表明,重熔后钢中夹杂物乎均尺寸减少36.4%,夹杂物总量降低46.7%;电渣时应采用氩气保护以减少钢中Al、Mn的烧损。  相似文献   

10.
何润  周立新  胡长伟  张洲 《特殊钢》2012,33(3):38-40
统计分析了1Cr18Ni9Ti钢1.2 t锭电渣重熔过程母材中的Ti含量-[Ti](0.586%~0.839%Ti)、渣中TiO2含量(2.1%~4.8%TiO2)和填充比(0.2~0.4)对[Ti]平均烧损值的影响。结果得出,电渣重熔过程电渣锭下部[Ti]的烧损较上部严重;随母材[Ti]的提高,电渣锭中平均烧损[Ti]降低;随渣中TiO2含量-(TiO2)提高,电渣锭下部[Ti]的平均烧损β值增加,而电渣锭上部β值没有明显变化,(TiO2)不宜超过2%;提高填充比有利于抑制[Ti]烧损。  相似文献   

11.
浅谈2Cr18Ni11Ti钢电渣重熔过程[Ti]的烧损   总被引:1,自引:0,他引:1  
分析了电渣重熔2Cr18Ni11Ti过程中[Ti]的烧损机理与影响[Ti]烧损的因素,提出了根据自耗电极[Ti]含量灵活制定相应的电渣重熔工艺。  相似文献   

12.
通过采用保护气氛电渣炉与常规电渣炉冶炼含钛合结钢30Cr Mn Mo Ti A的对比试验,其结果表明:使用保护气氛电渣炉冶炼的电渣钢锭[Ti]烧损少且分布均匀,从中总结出两种电渣炉电渣重熔30Cr Mn Mo Ti A钢[Ti]的烧损规律。  相似文献   

13.
王海江  徐朋  杨松 《特殊钢》2015,36(6):23-25
生产试验了氩气流量(15~45 L/min),三元(/%:63CaF2,27Al2O3,10CaO)、四元(/%:53CaF2,22Al2O3,20CaO,5MgO)和五元(/%:50CaF2,22Al2O3,20CaO,5MgO,3TiO2)渣系和重熔过程加Al粉对3 t保护气氛重熔1Cr21Ni5Ti钢锭[/%:0.09~0.14C,≤0.80Mn,≤0.80Si,≤0.025S,≤0.035P,4.8~5.8Ni,20~22Cr,5×(C-0.02~ 0.65Ti]中[Ti]的影响。结果表明,增加氩气流量,采用五元渣系和重熔过程均匀加入Al粉可使重熔锭平均钛的烧损△[Ti]≤0.15%。采用优化工艺在6 t保护气氛电渣炉,填充比0.58,电流12 500~13 500 A,电压40~43 V,,氩气流量30 L/min,重熔1Cr21Ni5Ti钢的结果表明,电渣锭成分稳定,C含量0.090%~0.091%;Ti含量0.46%~0.52%。   相似文献   

14.
为了研究低氟渣电渣重熔过程中电渣锭中元素的变化,以Incoloy825合金为研究对象,渣中添加不同含量的TiO2和脱氧剂,进行了四组电渣重熔试验;并基于离子分子共存理论、热力学理论和质量守恒定律建立Al、Ti含量控制的热力学模型。结果表明,随着渣中TiO2含量的增加,电渣锭中Ti含量增加,Al含量减少,这是由于铝钛的交换反应4Al+3TiO2=3Ti+2Al2O3控制的,Si和Mn元素含量变化不大。当TiO2含量不变时,Al、Ti元素的含量沿着电渣锭高度的方向上有不同程度的增加,Si、Mn元素的含量则均有所下降。当熔渣中■为-3.16时,结合Al脱氧剂的添加,可以得到Al、Ti含量均匀性较好的产品,试验结果很好地验证了热力学模型的准确性。  相似文献   

15.
根据双臂电渣炉冶炼的521钢(/%:0.37~0.45C,0.80~1.15Si,4.50~5.30Cr,1.20~1.40No,0.85~1.10V)和GCr15钢(/%:0.97C,1.57Cr)电渣锭下部出现的表面缺陷,统计分析了70CaF_2-30Al_2O_3二元渣量、下部冶炼电压和电流以及重熔时间对2.5~5 t电渣锭表面质量的影响。结果表明,控制重熔时间(重熔速率)对电渣锭的表面质量有较大影响:5 t 521钢锭渣量200kg,钢锭下部重熔电压55 V,电流15 500~16 800 A,总重熔时间为434~489 min时,钢锭表面光滑,总重熔时间500 mim时,电渣锭下部有厚15 mm的渣疤;2.5 t GCr15钢锭渣量120kg,下部重熔电压43~44 V,电流13 500~14000 A,总重熔时间316~359 min,钢锭表面光滑,总重熔时间380 min,电渣锭下部有7mn深渣沟和夹渣。  相似文献   

16.
刘永新 《四川冶金》1993,15(3):20-23,35
本文讨论高钛低铝R-26合金电渣重熔过程中钛的烧损问题。通过渣中加TiO_2粉量的变化,重熔过程中补加Al粉和电极粉的方法熔炼电渣锭,并对其Ti、C含量进行化学分析,与电极棒成份进行对比分析,从而得出起保钛作用的是Ti_3O_5,并非TiO_2;Al粉的加入起到间接保钛的作用;补加的少量电极粉在重熔初期低温时引起少量增碳,而在高温下则与TiO_2反应生成Ti_3O_5。  相似文献   

17.
为减少大型铁镍基合金锭电渣重熔过程产生的铸锭头尾Al和Ti元素分布不均现象。基于分子-离子共存理论建立了GH4706合金电渣重熔过程中Al和Ti元素烧损的热力学模型。根据理论计算分析,使用Wagner公式中一阶活度相互作用系数可以计算铁镍基合金熔液中Al和Ti元素活度。将Fe和Ni视为基体,不考虑Ni元素对合金中其他组元活度相互作用系数的影响可得到较为准确的计算结果。在五元渣系CaO-MgO-Al_2O_3-TiO_2-CaF_2中,控制渣中TiO_2质量分数在2%~6%范围内可有效抑制合金中铝、钛元素的烧损。采用计算所得渣系成分,工业试验成功冶炼出直径为1 100 mm的GH4706电渣锭,且Al和Ti烧损量小于10%。  相似文献   

18.
2205双相不锈钢6.2 t 200 mm×1250 mm扁锭(/%:0.015~0.016C,0.15~0.16Si,1.35~1.39Mn,0,005~0.006S,0.023~0.024P,22:78~22.95Cr,5.40Ni,3.15~3.17Mo,0.193~0.194N)由20 t双极串联抽锭电渣重熔炉生产。通过采用50CaF2-19Al2O3-19CaO-6MgO-6SiO2液态熔渣,控制抽锭速度12 mm/min,电极熔化速度1100~1200 kg/h等工艺措施,扁锭表面质量良好,表面修磨量≤3 mm,满足轧制要求。  相似文献   

19.
《特殊钢》2017,(1)
34CrNiMo6钢(/%:0.30~0.38C,0.50~0.80Mn,≤0.40Si,0.015~0.035S,≤0.035P,1.30~1.70Ni,1.30~1.70Cr,0.15~0.30Mo)的冶金流程为30 t EAF-LF-VD-浇铸Φ470 mm电极-3.6 t ESR锭(Φ610 mm)-锻成Φ280 mm棒材。在分析冶炼过程中影响钢中B类夹杂物级别因素的基础上,通过将电极氧含量从20×10~(-6)降至11×10~(-6)、同时电极S含量由0.035%提高到0.045%,进而减少重熔过程FeS等附加剂的添加量,将萤石-Al_2O_3-SiO_2-MgO重熔渣系中萤石由45%提高到60%及SiO_2由15%降低到5%等措施,生产钢材的B类夹杂物级别由原先的2.5级降至≤1.5级,并且钢中硫分布均匀适中,保证了电渣钢的质量。  相似文献   

20.
《特殊钢》2017,(2)
试验用UNS N06625合金(/%:0.027C,0.005S,0.005P,0.27Si,0.07Mn,21.68Cr,62.93Ni,9.00Mo,3.98Nb,0.20Ti,1.22Fe,0.143A1)由3 t中频感应炉熔炼,3 t电渣炉重熔后锻造成材。采用Gleeble1500D热模拟实验机对UNS N06625合金进行了950~1180℃变形速率5 s~(-1)的拉伸以及变形速率1,5,10 s~(-1)真应变0.9的压缩实验,得到了该合金的变形抗力、断面收缩率和真应力应变曲线。通过分析变形抗力和断面收缩率,确定了UNS N06625合金的热加工温度区间为975~1180℃;研究了变形温度和变形速率对该合金动态再结晶的影响;通过拟合计算应力应变数据,建立了UNS N06625合金的峰值应力模型和动态再结晶临界变形量模型。5 t电渣锭的生产实践表明,该合金合适的开坯加热温度为1120℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号