首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用碱酸-高温氯化联合法对天然鳞片石墨进行提纯。正交实验结果表明,碱酸法的最佳工艺条件:碱与石墨配比0.9,焙烧温度1 000℃,水洗温度80℃,水洗时间80 min,盐酸浓度1 mol/L,酸浸温度30℃,酸浸时间60 min。进一步采用高温氯化法(1 500℃)提高石墨提纯效果,当NH_4Cl与石墨加入比为0.4时,样品石墨固定碳含量达到99%以上。  相似文献   

2.
以攀枝花产细鳞片石墨(含碳量为94%~95%)为原料,通过化学方法使其含碳量大大提高,其最佳工艺条件为:碱熔过程反应温度600 ℃,时间60 min,NaOH溶液与石墨比例1∶0.6,NaOH浓度35%,酸解过程HCl用量为石墨质量的50%,在此条件下所制石墨纯度可达99.6%.  相似文献   

3.
细鳞片石墨的提纯研究   总被引:2,自引:0,他引:2  
以攀枝花产细鳞片石墨(含碳量为94%~95%)为原料,通过化学方法使其含碳量大大提高,其最佳工艺条件为:碱熔过程反应温度600℃,时间60min,NaOH溶液与石墨比例1∶0.6,NaOH浓度35%,酸解过程HC l用量为石墨质量的50%,在此条件下所制石墨纯度可达99.6%。  相似文献   

4.
杨森  杨绍斌  董伟  沈丁 《硅酸盐通报》2019,38(4):1148-115
天然微晶石墨含量丰富,晶粒微小,表现为各向同性,是制备锂离子电池负极材料的极好原料,但其纯度不高,利用盐酸和氟硅酸对浮选后微晶石墨进行混酸提纯处理.实验结果表明:当液固比为2:1、HF体积分数为50%、提纯时间为3 h、提纯温度为70℃时固定碳含量最高,达99%;结合XRD、SEM、EDS和Raman分析可知,混酸提纯后微晶石墨纯度提高,层间距变小,结晶度提高;提纯后的微晶石墨首次放电比容量为778.9 mAh/g,首次库伦效率增加到61.3%,循环性能、充放电效率和倍率性能均提高,阻抗值均降低.  相似文献   

5.
为实现准东煤灰的绿色化综合利用,笔者研究设计了从准东煤灰中制取氧化铝和白炭黑的工艺流程,确定了最佳工艺条件,并通过SPSS双变量分析比较不同影响因素对提取率影响程度。试验采用准东煤--将军庙原煤,破碎并用马弗炉模拟煤粉炉静态燃烧方式制取灰样。准东煤灰的成分分析和元素分析表明:SiO2占48.84%,Al2O3占31.26%。参照标准制备灰样,对灰样进行SEM分析,发现粘黏性严重,因此试验前先进行机械研磨。采用煤灰与硫酸铵焙烧法制备氧化铝,工艺分为焙烧过程和酸浸过程。因滤液中含有大量杂质铁、钙等元素,采用pH调节法除杂并对除杂效果进行检验,检验结果为除杂率接近100%。从提铝渣中制备白炭黑分为碱浸过程和多次碳分过程。在提铝工艺焙烧过程中,通过提铝率变化曲线及节能角度确定了各因素的最佳试验条件为:焙烧温度600℃,焙烧时间60 min,焙烧配料比1∶6;在提铝工艺酸浸过程中,得到最佳试验条件为:酸浸温度60℃、酸浸时间20 min、H2SO4浓度0.2 mol/L、酸浸液固比50。从提铝渣制备白炭黑研究中,通过SEM观察到提铝渣疏松多孔,有利于进一步的提硅试验。通过XRD对提铝渣分析,得出提铝渣中含有大量硅、钙元素;用K值法(RIR法)求得提铝渣中Si含量及经提铝后的Si损失率为7.64%。得出碱浸过程最佳试验条件为:碱浸温度60℃、碱浸时间30 min、碱浸NaOH浓度3 mol/L、碱浸液固比70,此时Si提取率为99%。采用多次碳分法进行提硅能够满足不同硅含量纯度要求,得到最佳碱浸工艺条件为碳分pH=9.5、CO2通气速率24 m L/min、碳分NaOH浓度0.2 mol/L、碳分液固比80。通过双变量相关性分析,得到各因素对提铝率、SiO2提取率及H2SiO3沉淀率影响程度大小分别为:焙烧温度>焙烧时间>焙烧配料比,酸浸时间>酸浸温度>H2SO4浓度>酸浸液固比,碱浸液固比>碱浸温度>NaOH浓度>碱浸时间,碳分pH>碳分液固比>碳分NaOH浓度>CO2通气速率。通过经济性及可行性分析,说明提出的工艺能有效实现准东煤灰的绿色化综合利用。从提铝后的滤液中重新提取(NH4)2SO4,实现生产原料的再利用;碳分过程后的Na2CO3溶液可通过加入石灰苛化的方式实现NaOH可循环利用于提取工艺生产;本工艺除生产氧化铝和白炭黑外,还能获得Na2SO4等附加产品。  相似文献   

6.
混酸提纯制备高纯石英砂及浸出动力学分析   总被引:1,自引:0,他引:1  
以江苏省东海县石英砂为原料,盐酸、草酸及柠檬酸为浸出剂,混酸浸出法制备高纯石英砂,研究了酸液浓度、液固质量比、酸浸温度和酸浸时间对石英砂物相结构及提纯效果的影响,推导了盐酸、草酸及柠檬酸混酸浸出石英砂的动力学模型.结果表明:酸液浓度、液固质量比、酸浸温度及酸浸时间均对酸浸除杂效率有明显影响,混酸浸出符合扩散控制模型,E...  相似文献   

7.
采用碱酸法提纯内蒙古某鳞片石墨矿浮选精矿,研究了原料及其中石英、云母和赤铁矿等主要杂质的嵌布特征和产出形态,考察了NaOH用量、焙烧温度和时间、HCl浓度和用量、酸浸时间等因素对提纯效果的影响,分析了纯化过程中原料及杂质的光谱特性与微观形貌.结果表明,石墨主要呈叶片状或弯曲的鳞片状均匀分布,部分石墨片晶与石英、云母、赤褐铁矿、高岭石等呈连晶或内部镶嵌与包裹;提纯后石墨含碳量由84.32%提高到99.51%(ω);加碱焙烧过程中杂质生成硅(铝)酸钠,酸浸过程中则除去赤铁矿等金属氧化物和氢氧化物沉淀;纯化过程对石墨片晶状结构和微观形貌均没有破坏,表面杂质明显减少.  相似文献   

8.
针对煤化工生产过程中半焦粉煤渣存在多种杂质、阻碍其综合回收和高值化资源利用等问题,利用湿法酸碱调控沉降法工艺制备高纯度氧化铁红,研究了不同固液比、酸浸温度和时间、酸碱度以及煅烧温度和时间对回收率和纯度的影响。结果表明,酸浸过程的最佳制备条件:固液比为1∶6、硫酸浓度为3.68 mol/L、酸浸温度为160℃、酸浸保温时间为4 h;在碱式pH调控沉降体系条件下的最佳制备条件:碱源浓度为2 mol/L、pH为6.8;在煅烧过程中的最佳制备条件:煅烧温度为600℃、煅烧保温时间为2 h。在超声时间为10 min、离心转速为4 000 r/min条件下,半焦粉煤渣铁类化合物含铁质量占总质量由24.26%上升为98.12%,氧化铁红产品纯度达98.12%,回收率约为98.69%。  相似文献   

9.
利用脱硅污泥制备聚合氯化铁(PFC),实现了脱硅污泥和废盐酸中铁的回收。酸浸实验结果表明,在固液比为0.2,废酸浓度为0.55 mol/L,酸浸温度为40℃,酸浸时间20 min时,铁回收率为98.5%。通过引入改性剂凹凸棒土,制备了聚合氯化铝铁(PFAC)。通过焦化废水絮凝实验,比较了PFC和PFAC的絮凝效果,结果表明PFAC对焦化废水的去除效果优于PFC。  相似文献   

10.
利用脱硅污泥制备聚合氯化铁(PFC),实现了脱硅污泥和废盐酸中铁的回收。酸浸实验结果表明,在固液比为0.2,废酸浓度为0.55 mol/L,酸浸温度为40℃,酸浸时间20 min时,铁回收率为98.5%。通过引入改性剂凹凸棒土,制备了聚合氯化铝铁(PFAC)。通过焦化废水絮凝实验,比较了PFC和PFAC的絮凝效果,结果表明PFAC对焦化废水的去除效果优于PFC。  相似文献   

11.
以碳酸钠为活化剂活化粉煤灰,考察原料配方、焙烧条件(温度、时间)、酸浸条件(用量、浓度)、溶胶一凝胶条件(初始浓度、温度)对SiO2产率的影响.结果表明:(1)当m粉煤灰∶m碳酸钠≥1∶1.8或焙烧温度超过850℃时,样品发生烧结无法从坩埚中取出,面致酸浸分解率和SiO2产率为零;(2)粉煤灰在没有助剂条件下进行高温活化,酸浸分解率为24.13%,无SiO2产品;(3)盐酸浓度和溶胶-凝胶液的初始浓度对SiO2的产率基本无影响;(4)温度是影响溶胶-凝胶的显著因素;(5)最佳工艺条件为∶m粉煤灰∶m碳酸钠=1∶1.2、焙烧温度800℃、焙烧时间2h;凝胶-凝胶水浴温度94℃,SiO2的产率可达85.35%.  相似文献   

12.
李霞  邓昭平  李晶 《广东化工》2016,(21):24-25
以高岭土为原料,采用煅烧-酸浸法制备改性高岭土,研究高岭土于不同煅烧温度、盐酸质量浓度、酸浸温度和酸浸时间下制备的改性高岭土对卤水中Li+的吸附性能。最佳工艺条件为:高岭土700℃煅烧1 h,20 wt%HCl 90℃酸浸2.5 h;此时改性高岭土对卤水中锂的吸附量为2.3 mg/g,说明用煅烧-酸浸法制备改性高岭土可以有效的富集卤水中的锂离子。  相似文献   

13.
利用盐酸和硫酸的混酸提取煤矸石中氧化铁和氧化铝,用以制备净水剂,探索煤矸石中氧化铁和氧化铝的最佳提取工艺条件,考察了煤矸石的焙烧温度、混酸浓度、酸浸时间、酸浸温度、混酸比例等工艺条件对提取率的影响,并对酸浸温度(A)、酸浸时间(B)、混酸比例(C)、酸浸浓度(D)四个因素进行了四因素三水平的正交实验.结果表明:煤矸石在750℃下与一定量Na_2CO_3一起焙烧1.5h,焙烧效果较好;将焙烧后的粉末用盐酸与硫酸体积比为3∶1、浓度为20%(质量分数)的混酸溶液按照固液比1∶10(1g样品10mL混酸),100℃下在磁力搅拌器上加热搅拌2h左右,氧化铝和氧化铁提取率最高.氧化铝的提取率达14.56%,氧化铁提取率达到15.78%.  相似文献   

14.
通过添加助溶剂高温焙烧的方式对粉煤灰进行改性,经过酸浸、碱溶和聚合等步骤,制备标题化合物。实验表明,当焙烧温度为900℃;m(粉煤灰)∶m(助溶剂)=1∶1;焙烧时间为30 min;酸浸时间为60 min时,粉煤灰中Al3+、Fe3+的溶出率达到最高。在温度为80℃、质量分数为20%的NaOH溶液中碱溶90 min后,Si的溶出率达到最高。通过与市售标题化合物、聚合氯化铝(PAC)、聚合氯化铝铁(PAFC)等混凝效果的比较,表明用该方法制备的标题化合物在浊度、COD、色度等方面的去除率均已超过或接近常见的市售混凝剂。同时简要介绍了其混凝机理。  相似文献   

15.
为获得一种制备高纯硅的高纯原料,在分析太阳能级多晶硅切割废料(CLW)物性的基础上,详细研究了CLW的酸浸除杂,超声酸浸除杂,考察了盐酸浓度、酸浸时间、酸浸温度、酸浸液固比和搅拌对除杂效果的影响,并分析了超声酸洗过程动力学,得到的最适宜工艺条件为:w(盐酸)为19%,反应时间3 h,水浴温度为60aC,浸出液固比4:1...  相似文献   

16.
从煤矸石中提取有价金属元素是实现煤矸石综合利用的重要途径之一。以高铁低铝煤矸石中的Al2O3为研究对象,采用焙烧法活化煤矸石,以盐酸为浸出介质,研究了焙烧温度、焙烧时间、酸浸温度、盐酸体积分数、酸浸时间和液固比(酸浸1 g煤矸石所用盐酸的体积)对活化物料煤矸石中Al2O3浸出的影响,并对煤矸石中Al2O3的浸出动力学进行了研究。其中,焙烧温度设置5个水平(550℃,650℃,750℃,850℃,950℃),焙烧时间设置5个水平(0.5 h, 1.5 h, 2.5 h, 3.5 h, 4.5 h),酸浸温度设置5个水平(60℃,80℃,100℃,109℃,120℃),盐酸体积分数设置5个水平(36%,43%,49%,57%,64%),酸浸时间设置5个水平(0.5 h, 1.5 h, 2.5 h, 3.5 h, 4.5 h),液固比设置5个水平(2 mL/g, 3 mL/g, 4 mL/g, 5 mL/g, 6 mL/g)。利用扫描电镜(SEM)和X-射线衍射...  相似文献   

17.
本文以阜新地区的煤矸石为原料,研究利用酸提法从煤矸石中提取氧化铝的工艺。通过考察焙烧温度、焙烧时间、盐酸浓度、提取时间、提取温度和固液比等因素确定了从煤矸石中提取氧化铝的最佳工艺条件。结果表明:焙烧温度为700℃、焙烧时间为1 h、盐酸浓度为7mol·L-1、提取时间2 h、提取温度为80℃、固液比为1:5,氧化铝的提取率可达到35%。  相似文献   

18.
隐晶质石墨的高温碱煅烧法提纯工艺研究   总被引:11,自引:1,他引:10  
以隐晶质石墨为原料,从理论上阐述了采用高温碱煅烧法提纯石墨的原理,研究了碱量,煅烧温度、煅烧时间、酸的用量、浓度、酸洗温度、酸洗时间等工艺条件对提纯效果的影响。结果表明:用高温碱煅烧法提纯隐晶质石墨,可使石墨的含碳量达到96%以上。  相似文献   

19.
用钛白副产的硫酸亚铁浸锰制备高纯二氧化锰   总被引:5,自引:0,他引:5  
以低品位的贫软锰矿为原料,对用生产钛白副产的硫酸亚铁直接浸锰、浸出液除杂、碳酸锰沉淀、碳酸锰焙烧及二氧化锰精制制备二氧化锰的工艺条件进行了研究。实验得到硫酸亚铁浸锰的最佳工艺条件为:浸锰温度70℃,浸锰时间3h,硫酸初始浓度2.1mol/L,矿粉粒度〈150μm,硫酸亚铁加入量为其理论量的120%,固液质量比1:3。碳酸锰焙烧的适宜条件为:焙烧时间4~5h,焙烧温度320—340℃,焙烧料翻动时间10-15min。按该条件浸锰并制备高纯二氧化锰,锰的浸出率可达98.5%以上,产品质量符合ZBG13001-1986一级品标准。该工艺为贫软锰矿的开发利用及钛白粉厂的硫酸亚铁渣的综合利用开辟了一条新途径。  相似文献   

20.
《应用化工》2022,(9):1766-1768
以油页岩灰渣为原料,用酸浸法-微湿气体法制备了γ-Al_2O_3,讨论了煅烧温度、酸灰比、酸浸温度与时间等对氧化铝提取率的影响。结果表明,最佳工艺条件为:油页岩灰渣煅烧温度930℃,盐酸/煅烧灰分=40.0 m L/15.0 g,酸浸温度100℃,酸浸时间2.0 h,微湿空气700℃,氧化铝提取率为95%左右,XRD分析确定为γ-Al_2O_3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号