首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
多元红外光导探测器电子学串音研究   总被引:4,自引:0,他引:4  
在多元红外探测器的应用中,串音是影响探测器性能的一个重要因素。其中,多元红外光导探测器的电子学串音主要由探测元间的接地电阻引起。通过对光导探测器工作电路的原理分析,得出多元红外光导探测器的电子学串音与探测元间接地电阻的阻值成正比,与偏置电阻的阻值成反比,且与原信号反相的结论,并设计了电子学串音测试原理电路进行了实验测试。测试结果验证了理论分析的正确性。通过理论推导和实验测试证明:在接地电阻一定时,通过提高偏置电阻来抑制电子学串音的方法是可行的。  相似文献   

2.
《红外技术》2018,(3):233-240
红外成像系统利用光学系统和红外探测器接收目标物体的红外辐射,并将红外辐射分布图以人眼可观测的方式显示出来。成像处理电路功能包括为探测器提供电源、偏置电压和驱动信号使探测器能够正常工作。偏置电压源的噪声将给探测器的输出引入噪声,增大系统的NETD,降低系统性能。在设计低噪声偏置电压源的基础上,采用经典噪声测量电路对偏置电压源的噪声进行了测量。为测量偏压源的低频噪声,噪声测量电路分为前置放大电路和0.1~10 Hz滤波电路。对红外探测器用偏置电压源各级电压进行噪声测量后,得出了噪声值最小的红外探测器用偏置电压源的设计方案。  相似文献   

3.
在红外探测器的工程应用中,前置放大电路是影响整个探测系统性能的重要组成部分。本文从制冷型碲镉汞光导红外探测器的工作特性出发,设计了一种恒流偏置的低噪声前置放大电路。对电路的工作原理以及噪声性能进行分析,并进行了电路仿真验证以及低噪声的性能测试。实验结果表明,基于窄带滤波法设计的前置放大电路信噪比达到80 dB,具有60~120 dB的可调增益,可以有效抑制噪声并检测到10-8A量级的微变交流信号,在信号检测方面达到了良好的检测效果。  相似文献   

4.
温度传感器校准系统中红外信号检测电路设计   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高红外探测器检测红外微弱信号的精度,采用晶体管恒流偏置电路,使用低噪声高速运算放大器构成了前置放大电路。运用电路理论建立放大电路的噪声等效模型,采用叠加法计算1级放大输出端的噪声电压。通过中温黑体炉红外辐射实验,测试电路性能,取得了500℃~700℃时的电压波形,计算得出信噪比为7.25×103。结果表明,红外探测器前置放大电路达到高信噪比、响应速率快、抗干扰强的应用要求,可以对红外微弱信号检测放大。  相似文献   

5.
针对非制冷红外焦平面驱动电路在噪声和可靠性方面的高要求,分析了降低直流偏置电压噪声以降低红外焦平面阵列噪声的可行性,提出了一种新型低噪声的非制冷红外焦平面驱动电路.该驱动电路采用ADI公司的AD8606系列高精度低噪声运算放大器构成一个直流缓冲器,其具有强大的直流驱动能力和低噪声性能,实现了直流偏置电路.采用Altera公司的Cyclone Ⅱ系列可编程逻辑器件,设计红外焦平面的时序驱动电路.测试结果表明:焦平面探测器均方根噪声降低至397.83μV,为后续非制冷红外热像仪的研制奠定了基础.  相似文献   

6.
氧化钒热敏薄膜非致冷红外探测器的等效模型   总被引:2,自引:0,他引:2  
建立了氧化钒热敏薄膜微测辐射热计的PSPICE模型,结合一个具体的CMOS读出电路给出探测器的等效电路模型,分析了探测器的电学和噪声特性,根据等效模型基于微测辐射热计电阻RD和读出电路MOS沟道宽度形两个设计参数对噪声等效温差(NETD)进行了优化,优化数据表明,折中选取参数RD和W对探测器性能有重要的意义。  相似文献   

7.
刘文浩  董峰 《红外》2018,39(2):21-27
为了验证二类超晶格红外探测器的性能,设计了探测器的驱动电路。因红外探测器的灵敏度高,设计了低噪声电源偏置电路,优化了电路板的布局。结合320×256长波红外焦平面组件特点设计的驱动电路为探测器组件提供电源与偏置电压、时序与控制信号。实验结果表明,该驱动电路能基本满足二类超晶格红外成像系统低噪声、高精度的要求。  相似文献   

8.
一种差分输入HgCdTe红外探测器专用电流读出电路的研制   总被引:1,自引:0,他引:1  
袁红辉  陈永平  陈世军  刘强  徐星 《激光与红外》2009,39(10):1100-1103
利用差分输入的折叠共源共栅结构实现了一种在77 K工作的高性能低噪声HgCdTe红外探测器专用的电流读出电路.文中分析了它的噪声特性,并提出了减少噪声的措施.此电路用1.2 μm的标准CMOS工艺制造完成.经过测试,这种电流读出电路在低温77 K下能正常工作,反馈电阻大小为41 MΩ,等效输入噪声电流仅0.03 pA/Hz1/2,连接HgCdTe红外探测器后能正常工作.  相似文献   

9.
姚琴芬  顾国华 《红外技术》2011,33(12):711-714
根据国内常见的微测辐射热计器件结构原理及读出电路,研究了偏置电压与噪声等效温差的关系,推导了偏置电压与探测器输出电压的线性方程.提出了基于直方图统计的偏置电压调整模型,降低探测器的噪声等效温差,增强图像对比度,使此种类型的红外探测器能够用于各种目标场景的探测.实验证明,偏置电压自适应调整技术应用于红外图像实时处理系统中...  相似文献   

10.
针对引力波探测空间天线激光干涉仪对四象限光电探测器提出的低噪声、高灵敏度、高带宽的要求,设计了一种四象限光电探测器芯片与读出电路混合集成的低噪声光电探测器.四象限光电探测器芯片采用四个性能一致的双耗尽区InGaAs PIN光电二极管单片集成结构,以降低二极管电容,减小象限间隔,提高灵敏度.通过PSPICE软件对由探测器芯片、低噪声跨阻放大读出电路构成的探测器模块进行了仿真,优化了电路参数,计算出相应的增益、带宽、噪声功率密度.性能测试表明,研制的集成式探测器模的-3 dB带宽为28.3 MHz,等效噪声功率密度为1.7pW/Hz1/2,象限增益一致性为0.76%,基本满足空间激光干涉仪的需求.  相似文献   

11.
A compact and low-phase-noise Ka-band pHEMT-based VCO   总被引:3,自引:0,他引:3  
A low phase-noise Ka-band monolithic voltage-controlled oscillator (VCO) designed using the negative resistance concept is reported. A circuit fabricated using the three-dimensional monolithic microwave integrated circuit technology exhibits a high integration level; its size is a record at just 0.5 mm/sup 2/. On-wafer measurements demonstrate a low phase noise of -102 dBc/Hz at a 1-MHz offset. The VCO delivers an output power of 11.8 dBm at the center frequency of 28.3 GHz. The frequency tuning range is more than 3.8 GHz. Dependence of the circuit performance on the bias conditions is also reported and suggests that an optimum phase-noise characteristic can be achieved when biasing the transistor to optimize its transconductance and noise figure.  相似文献   

12.
A comprehensive HBT noise model for circuit simulation is presented that describes the microwave noise behavior up to the transit frequency. It is based on diode noise theory, and requires only the small-signal equivalent circuit, including the thermal resistance, and the dc bias point. A main feature is correlation of the shot-noise sources at the pn junctions. The model is verified by measurements of the four noise parameters of an InGaP/GaAs HBT, varying frequency and bias conditions  相似文献   

13.
本文提出了基于AD7981的数据采集系统ADC接口设计方案.从硬件设计和软件开发两个方面阐述了ADC接口的具体设计和实现方法.ADC接口电路采用模数隔离设计,防止噪声串扰.模数转换芯片性能优越,留有较大的性能余量,扩展了系统的使用范围,前端信号调理电路引起的噪声和误差控制得当,使得ADC接口电路具备较高的准确性和可靠性.  相似文献   

14.
The system performance degradations of inband crosstalk produced by distributed Rayleigh scattering and a single discrete time delayed path have been measured in the same system. Rayleigh scatter crosstalk degrades performance more than equal amounts of discrete crosstalk. By parameterizing the system bit error rate (BER) and received power, we have separated the optical and electrical noise contributions to the BER based on their intensity and crosstalk scaling. We observed behavior consistent with earlier models, but found an unexpected increase in the total optical noise. This excess noise had a very regular linear scaling with crosstalk power. Because of its well defined crosstalk and intensity scaling, this easily measured noise term can be used as a correction to established models to more accurately estimate system performance at high optical powers and low crosstalk levels  相似文献   

15.
An analysis is presented of the appearance of occasional noise spikes in very complex VLSI circuits. The noise spikes may cause so-called soft errors if the operating frequency is high and the variations in channel resistance large. The main contributing noise source is capacitive and inductive crosstalk. Noise spikes in present-day circuits are about an order of magnitude smaller than spikes caused by radioactive decay of trace elements in the encapsulation, and by cosmic rays. Fault-tolerant circuit design reducing the influence of radioactive and cosmic ray bombardment will help against noise spikes as well. A comparison is made with noise spikes in neurons.  相似文献   

16.
针对高速数字电路PCB中传输线间串扰的严重性,从精确分析PCB中串扰噪声的角度出发,在传统的双线耦合模型的基础上,采用了一种三线串扰耦合模型。该模型由两条攻击线和一条受害线组成,两条攻击线位于受害线的两侧,线间采取平行耦合的方式。利用信号完整性仿真软件Hyperlynx对受害线上的近端串扰噪声和远端串扰噪声进行了仿真。仿真结果表明,不同的传输模式和传输线类型、信号层与地平面的距离、耦合长度、传输线间距和信号上升/下降沿等因素会对受害线上的近端串扰和远端串扰产生较大的影响。在分析仿真结果的基础上,总结出了高速PCB设计中抑制串扰的有效措施,对高速数字电路设计有一定的指导意义。  相似文献   

17.
李朝辉 《现代电子技术》2007,30(20):163-164,167
针对集成电路中互连线之间的串扰问题,建立了一个基于电阻和电容的串扰分析模型,给出了干扰信号为线性倾斜信号时串扰的时域响应公式,并得出了串扰峰值的估算公式,明确了干扰信号上升沿对串扰的影响。利用该公式,能对全局互连性能的影响做出正确的估计,在互连布局前预先进行路由规划和资源选择。  相似文献   

18.
As the operating frequency of systems increases above the gigahertz frequency range, the electrical performance of a package becomes more critical. Wafer level package (WLP) is a promising solution for future high-speed packaging needs. Because the length of the interconnection lines on the WLP is limited to die size, the WLP has a minimum number of electrical parasitic elements. Because the crosstalk generates significant unwanted noise in nearby lines, causing problems of skew, delay, logic faults, and radiated emission, the crosstalk phenomena is drawing more attention than ever among the electrical characteristics of the WLP. Consequently, the modeling of the crosstalk parameters of the WLP is very important when used in high-speed systems. In this paper, we first report the crosstalk model parameters of the WLP, especially for the redistribution layer. These can be easily embedded into SPICE circuit simulation. The model is represented by the distributed lumped circuit elements, such as the mutual capacitance and the mutual inductance. The crosstalk model was extracted from two-step on-wafer S-parameter measurements and was fitted to the measurements made at up to 5 GHz.  相似文献   

19.
Generally, it is better to use closed form expressions instead of simulation tools to predict coupling effects in a circuit and evaluate noise voltages characteristics. A new RLC crosstalk noise expression, based on an RLC transmission line model propagating each propagation mode, has recently been proposed and has been validated in previous works. From this expression, we propose in this paper to calculate the noise characteristics such as the maximum amplitude and the noise pulsewidth. They provide information on the way to modify the circuit structures or interconnect designs to reduce or control crosstalk noise more rapidly than by setting about electrical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号