首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
The apocytochrome b genes from two strains of the yeast Kluyveromyces lactis, have been isolated and sequenced. The coding sequences in strains WM27 (NRRL Y-17066) and WM37 (NRRL Y-1140) were identical but the upstream noncoding regions were slightly different. The sequences demonstrated the presence of a continuous open reading frame with no introns. The amino acid sequence, derived from the coding strand, showed 82% homology to the apocytochrome b of Saccharomyces cerevisiae strain D273-10B and only 58% homology to the protein from Schizosaccharomyces pombe strain 50. CUN and CGN codon families were absent from the K. lactis gene. Codon usage was very similar to that of other mitochondrial genomes with mostly U or A in the third position. There were two unusual features. All threonines were coded by ACA(U) and all arginines by AGA.  相似文献   

2.
3.
The alcohol dehydrogenase system in the yeast, Kluyveromyces lactis   总被引:5,自引:0,他引:5  
We have studied the alcohol dehydrogenase (ADH) system in the yeast Kluyveromyces lactis. Southern hybridization to the Saccharomyces cerevisiae ADH2 gene indicates four probable structural ADH genes in K. lactis. Two of these genes have been isolated from a genomic bank by hybridization to ADH2. The nucleotide sequence of one of these genes shows 80% and 50% sequence identity to the ADH genes of S. cerevisiae and Schizosaccharomyces pombe respectively. One K. lactis ADH gene is preferentially expressed in glucose-grown cells and, in analogy to S. cerevisiae, was named K1ADH1. The other gene, homologous to K1ADH1 in sequence, shows an amino-terminal extension which displays all of the characteristics of a mitochondrial targeting presequence. We named this gene K1ADH3. The two genes have been localized on different chromosomes by Southern hybridization to an orthogonal-field-alternation gel electrophoresis-resolved K. lactis genome. ADH activities resolved by gel electrophoresis revealed several ADH isozymes which are differently expressed in K. lactis cells depending on the carbon source.  相似文献   

4.
5.
We present here the sequence of the mitochondrial DNA of the pathogenic thermodimorphic fungus Paracoccidioides brasiliensis, agent of an endemic disease in most South American countries. The sequenced genome has 71 334 bp and is organized as a circular molecule with two gaps of unknown size flanking the middle exon of the nad5 gene. We located genes coding for the three subunits of the ATP synthase (atp6, atp8 and atp9), the apocytochrome b (cob), three subunits of the cytochrome c oxidase enzyme complex (cox1, cox2 and cox3), seven subunits of the reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase (nad1, nad2, nad3, nad4, nad5, nad6 and nad4L) and the large (rnl) and small (rns) subunits of ribosomal RNA. Two maturases and a ribosomal protein (rms5) are located inside introns. Twenty-five tRNAs were identified with acceptors for all 20 amino acids. Seven polypurine/polypyrimidine tracts (140-240 bp) have been found in this genome. All genes are in the same orientation over the genome, while their order is closest to the mitochondrial genomes from Penicillium marneffei and Aspergillus nidulans.  相似文献   

6.
The linear killer plasmids, pGKL1 and pGKL2, from Kluyveromyces lactis stably replicated in mitochondrial DNA-deficient (rho 0) MATa or MAT alpha haploids of Saccharomyces cerevisiae, but were unstable and frequently lost in rho 0 MATa/MAT alpha diploids, suggesting that the replication of pGKL plasmids was under the control of the MAT locus. In MATa/MAT alpha cells of S. cerevisiae, the MAT alpha gene product (alpha 2) is combined with the MATa gene product (a1) and the resultant protein, a1-alpha 2, acts to repress the expression of haploid specific genes. Experiments showed that the K. lactis linear plasmids were stably maintained in rho 0 mata1/MAT alpha diploids, indicating that the a1-alpha 2 repressor interfered with the stability of pGKL2. It was revealed by computer analysis that the consensus sequence homologous to the a1-alpha 2 repressor binding site occurred within the coding regions of pGKL2 genes which were presumed to be essential for the plasmid replication. Since the plasmids were stably maintained in diploids of K. lactis, the mating type control must not be working there.  相似文献   

7.
8.
9.
In this paper, we present evidence that there are two closely linked copies of the ATP3 gene coding for the gamma subunit of the F(1)F(0)-ATPase complex (EC3.6.1.34) in four laboratory strains of Saccharomyces cerevisiae, even though the yeast genome project has reported that ATP3 is a single-copy gene on chromosome II. We previously reported that the gene dosage (three copies) of ATP1 and ATP2 is coincident with the subunit number of F(1)-alpha and F(1)-beta, but that the gene dosage of ATP3 was not consistent with the subunit stoichiometry of F(1)F(0)-ATPase. By applying long PCR and gene walking analyses, we estimated that the two copies of ATP3 were approximately 20 kb apart, and we designated that which is proximal to the centromere ATP3a, while we named that which is distal ATP3b. The nucleotide sequences of the two copies of ATP3 were identical to the reported sequence in the W303-1A, W303-1B and LL20 strains, while only the DC5 strain had a single base substitution in its ATP3a. With the exception of this substitution, the other nucleotide sequences were identical to the upstream 860 bp and the downstream 150 bp. The differences between ATP3 with the single base substitution (Ser(308) to Phe) and ATP3 without the substitution on the complementation of the ATP3 disruptant and on the maintenance of the mitochondrial DNA were observed, suggesting that Atp3ap and Atp3bp in the DC5 strain might have different functions. However, it should not always be necessary for yeast cells to carry different types of ATP3 because the other three strains carry the same type of ATP3. It was also demonstrated that the disruption of the ATP3 genes basically leads to a loss of wild-type mtDNA, but the stability of the mtDNA is not dependent on the ATP3 alone.  相似文献   

10.
The TRP1 gene of the yeast Kluyveromyces lactis has been cloned from a genomic library by complementation of the Saccharomyces cerevisiae trp1-289 mutation. The gene was located within the clone by transposon mutagenesis and the coding region identified by DNA sequencing. This has indicated that K. lactis TRP1 encodes a 210-amino acid polypeptide which shows 53% identity to the homologous S. cerevisiae protein. The K. lactis TRP1 gene has been disrupted by substituting the S. cerevisiae URA3 gene for a large part of the TRP1 coding sequence. Replacement of the chromosomal TRP1 locus with this construction has enabled the production of non-reverting trp1- strains of K. lactis, while a genetic analysis of the disrupted allele confirmed that the TRP1 gene had been cloned. DNA sequencing has also shown that the K. lactis TRP1 sequence is flanked by genes encoding inorganic pyrophosphatase and histone H3, which we have designated IPP and HHT1 respectively. Hybridization studies have shown that in common with S. cerevisiae, K. lactis has two copies of the histone H3 gene. Each H3 gene is closely linked to a gene encoding histone H4 and in both yeast species the IPP gene is tightly linked to one of the histone gene pairs.  相似文献   

11.
The linear cytoplasmic element pPE1B from Pichia etchellsii CBS2011 (synonym Debaryomyces etchellsii) was totally sequenced. It consists of 12835 bp and has a remarkable high A+T content of 77.3%. The termini of pPE1B were found to consist of inversely orientated identical nucleotide repetitions 161 base pairs long, to which proteins are probably covalently linked at the 5' ends. Ten putative genes (open reading frames, ORFs) were identified, covering 96.5% of the total sequence. The predicted polypeptides correspond to proteins encoded by ORFs 2-11 of the linear plasmids pGKL2 of Kluyveromyces lactis and pSKL of Saccharomyces kluyveri. ORF1, existing on both latter elements, is lacking on pPE1B. An upstream conserved sequence motif (UCS) is located at the expected distance from the start codon of each of the 10 ORFs. As the arbitrarily chosen UCS6 was able to drive expression of a reporter gene in the heterologous pGKL-encoded killer system of K. lactis, extranuclear promoter function is probable. The almost congruent genome organization of pPE1B and other autonomous linear yeast plasmids sequenced so far, i.e. pGKL2 and pSKL, suggests a common, presumably viral, ancestor.  相似文献   

12.
LEU2 gene homolog in Kluyveromyces lactis.   总被引:2,自引:0,他引:2  
A DNA fragment that can complement the leu2 mutation of Saccharomyces cerevisiae was cloned from the genomic library of Kluyveromyces lactis. The nucleotide sequence revealed an open reading frame of 362 codons, 75% homologous to S. cerevisiae LEU2 gene. The upstream region contained a CCGGAACCGG sequence identical to the site of leucine-specific control of LEU2. Further upstream, there is a partial open reading frame homologous to rat ribosomal protein L7.  相似文献   

13.
A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey.  相似文献   

14.
The complete DNA sequence of cosmid clone p59 comprising 37,549 bp derived from chromsome X was determined from an ordered set of subclones. The sequence contains 14 open reading frames (ORFs) containing at least 100 consecutive sense codons. Four of the ORFs represent already known and sequenced yeast genes: B645 is identical to the SME1 gene encoding a protein kinase, required for induction of meiosis in yeast, D819 represents the MEF2 gene probably encoding a second mitochondrial elongation factor-like protein, D678 is identical to the yeast GSH1 gene encoding γ-glutamylcysteine synthetase and B746 is identical to the CSD3 gene, which plays an as yet unidentified role in chitin biosynthesis and/or its regulation. The deduced amino acid sequence of A550 is 63% identical to the Ccη subunit of a murine TCP-1-containing chaperonin and more than 35% identical to thermophilic factor 55 from Sulfolobus shibatae, as well as to a number of proteins belonging to the chaperonin TCP-1 family. Open reading frame F551 exhibits homology to two regions of the DAL80 gene located on yeast chromosome XI encoding a pleiotropic negative regulatory protein. In addition, extensive homology was detected in three regions including parts of ORFs A560, B746/CSD3 and the incomplete ORF C852 to three consecutive ORFs of unknown function in the middle of the right arm of chromosome XI. Finally, the sequence contained a tRNAArg3 (AGC) gene. The nucleotide sequence data reported in this paper have been deposited in the EMBL and GenBank databases under the accession number X85021.  相似文献   

15.
Phosphomannomutase (PMM) is a key enzyme, which catalyses one of the first steps in the glycosylation pathway, the conversion of D-mannose-6-phosphate to D-mannose-1-phosphate. The latter is the substrate for the synthesis of GDP-mannose, which serves as the mannosyl donor for the glycosylation reactions in eukaryotic cells. In the yeast Saccharomyces cerevisiae PMM is encoded by the gene SEC53 (ScSEC53) and the deficiency of PMM activity leads to severe defects in both protein glycosylation and secretion. We report here on the isolation of the Kluyveromyces lactis SEC53 (KlSEC53) gene from a genomic library by virtue of its ability to complement a Saccharomyces cerevisiae sec53 mutation. The sequenced DNA fragment contained an open reading frame of 765 bp, coding for a predicted polypeptide, KlSec53p, of 254 amino acids. The KlSec53p displays a high degree of homology with phosphomannomutases from other yeast species, protozoans, plants and humans. Our results have demonstrated that KlSEC53 is the functional homologue of the ScSEC53 gene. Like ScSEC53, the KlSEC53 gene is essential for K. lactis cell viability. Phenotypic analysis of a K. lactis strain overexpressing the KlSEC53 gene revealed defects expected for impaired cell wall integrity.  相似文献   

16.
Two DNA fragments which have autonomously replicating sequence (ARS) activity in both Saccharomyces cerevisiae and Kluyveromyces lactis have been isolated from the K. lactis kl killer plasmid. One fragment (Kla1) is 700 base pairs (bp) in length and plasmids carrying it are mitotically unstable in both hosts. In K. lactis, this instability leads to colonies having a 'nibbled' phenotype when grown on selective media and appears to be the result of inefficient plasmid segregation. The other fragment (Kla2) is an artificial junction fragment of 1100 bp which was produced during the cloning procedure. Kla2 has been divided into two sub-fragments Kla2A and Kla2B which have, respectively, ARS activity in K. lactis and S. cerevisiae but not the other species. This indicates that these two closely related yeasts have different sequence requirements for ARS activity. Kla2B contains a perfect match to the S. cerevisiae ARS consensus but Kla2A does not. Both Kla2A and Kla1 share a 10 bp sequence as the sole region of homology between them. This sequence, 5'TCATAATATA3', is tentatively offered as defining the ARS consensus sequence for K. lactis.  相似文献   

17.
18.
Telomeres are the specialized structures at the ends of eukaryotic chromosomes and are composed of short T/G-rich DNA repeats and the proteins that interact with them. Internal to telomeres are subtelomeric regions that are species-specific and often repetitive. The yeast Kluyveromyces lactis has telomeric tracts of 10-20 copies of a 25 bp repeat, but the subtelomeric regions have not previously been characterized in detail. Here we have cloned and characterized subtelomeric regions from 10 of the 12 chromosome ends. The amount of sequence examined was 0.7-10 kb for each subtelomeric region. We have identified a K. lactis subtelomeric element, the R element, which has a strong purine/pyrimidine strand bias and extends for about 2 kb. Internal to the R element, we found extensive similarity that is shared among half of the chromosome ends reported here. This similarity appears to include three putative gene families, two of which are also subtelomeric in Saccharomyces cerevisiae.  相似文献   

19.
The URA3 gene of Debaryomyces hansenii, encoding orotidine 5'-phosphate decarboxylase enzyme, was isolated by complementation in the yeast Saccharomyces cerevisiae. The deduced amino acid sequence is highly similar to Ura3 proteins from other yeast and fungal species. Analysis of the region upstream of the coding sequence revealed the presence of AG-rich minisatellite DNA sequences. In addition, upstream of the DURA3 sequence, we have found the 3'-terminal of a gene encoding a GEA2-like protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号