首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-five Holstein and Jersey calves were blocked according to breed and sex, then randomly assigned at 4 wk of age to four dietary concentrations of K (.55, .84, 1.02, or 1.32% of DM) for a 10-wk period. Plasma K, Na, Ca, and Mg; body weight change; and feed intake were similar among the four treatments, as was average daily gain, which averaged .73 kg across all diets. In a second trial, 16 Holstein calves were blocked according to sex and randomly assigned at 6 wk of age to two concentrations of dietary K (.34 and .58% of DM) for an 8-wk period. Plasma Ca was higher at wk 8, and plasma Mg lower at wk 4, on the .58% K diet, while plasma Na and K were unaffected by dietary K concentration. Average daily gain for the .58% K group was .74 kg compared with .60 kg for calves receiving .34% K. In addition, both feed intake and body weight change were higher during the last 4 wk of the trial for the calves fed .58% K. As a result of the increased performance exhibited by the calves receiving .58% K, we conclude that the dietary K requirement of the growing dairy calf is within the range of .34 to .58%.  相似文献   

2.
Sixteen intact male Holstein calves averaging 86 kg and 63 d of age were assigned randomly to four treatment groups. The four treatment diets contained .17, .67, 1.31, and 2.35% Ca on an as-fed basis. The resulting Ca:P ratios with P held constant at about .34% were .47:1, 1.92:1, 3.83:1, and 7.20:1. Calves were fed diets at 3% of their body weights for 4 wk. Magnesium in the bone ash and serum was lowered by the 2.35% Ca treatment. Serum inorganic P was also reduced by the highest Ca diet during the last 2 wk of the experiment. Liver had the highest concentration of Zn in calves fed .67% Ca, and the muscle from calves fed 1.31% Ca diet had the lowest amount of Zn. Copper was reduced in pancreas for 1.31% Ca diet, but Ca was highest in the muscle and heart at the .67% Ca treatment. Weight gains and feed efficiencies were not affected by Ca. Fecal pH was different among treatments and increased as Ca intake increased. Young growing dairy calves can adapt to a wide range of Ca intakes and Ca:P ratios and maintain a moderate growth rate for 4 wk. It appears that excessive dietary Ca may affect concentrations of Zn, Fe, Cu, and Mn in some body tissues, but the magnitude of the effect is relatively small.  相似文献   

3.
The influence of added sodium bicarbonate on calf performance and on a possible sparing effect on dietary protein was studied with 48 Holstein calves. Calves were assigned randomly to one of four starter diets containing 10% chopped hay in a 2 X 2 factorial designed experiment: 1) 12% crude protein, 0% sodium bicarbonate; 2) 12% crude protein, 3% sodium bicarbonate; 3) 17% crude protein, 0% sodium bicarbonate; and 4) 17% crude protein, 3% sodium bicarbonate. All calves were fed fermented colostrum for 5 wk and offered their respective starter diets from birth until 10 wk of age. Average daily gains and daily dry matter intakes for wk 0 to 5 were .24, .25; .28, .24; .26, .19; and .27, .24 kg for diets 1 to 4 and for wk 6 to 10 were .52, 1.64; .50, 1.73; .67, 1.78; and .63, 1.87 kg. Addition of sodium bicarbonate (diets 2 and 4) stimulated greater growth (0 to 5 wk) and higher feed intake for the 10-wk trial. Digestibilities of all nutrient measures at wk 9 were lower with added sodium bicarbonate and may be related to higher feed intake. Added sodium bicarbonate did not influence nitrogen digestibility. However, the higher protein diet with sodium bicarbonate improved nitrogen utilization. Rumen samples collected at 9 wk tended to have a higher pH and ratio of acetate: propionate with added sodium bicarbonate. Calves fed the high protein diets gained more weight and consumed more feed than calves fed the low protein diets.  相似文献   

4.
Holstein calves were fed pelleted iso-starch (25% of starter dry matter) diets containing barley (n = 16), corn (n = 16), oat (n = 16), and wheat (n = 16) starch for 12 wk of age. Feed consumption, nutrient intake, body weight (BW) gain, skeletal growth, and selected blood metabolites in calves during preweaning (d 1 to 49) and postweaning (d 50 to 84) periods were measured. Average daily starter consumption during pre-weaning and postweaning periods was the greatest in calves fed corn died followed by those fed a wheat diet and then in those fed barley and oat diets. During the preweaning period, the calves provided corn and wheat diets consumed greater amount of mixed grass hay than those fed barley and oat diets. During the postweaning period, mixed grass hay intake was the greatest in calves provided corn diet followed by those fed a wheat diet and then in those fed barley and oat diets. Nutrients (dry matter, crude protein, starch, and neutral detergent fiber) intake followed the solid feed consumption pattern in calves. Body weight and body measurements (body length, body barrel, heart girth, wither height, and hip height) at birth and at weaning (d 49) in calves fed different starch sources were similar. Body weight and body measurements at postweaning (d 84) were the greatest in calves fed a corn diet followed by those fed a wheat diet and then in those fed barley and oat diets. Overall average BW gain and total dry matter intake were the greatest in calves fed a corn diet than in those fed wheat, barley, and oat diets. Feed efficiency was greater in calves fed corn and wheat diets than in those fed barley and oat diets. Blood glucose, blood urea N, triglycerides, cholesterol, and creatinine were reduced with the advancing age of calves. Lesser blood glucose and greater blood urea N concentrations at wk 8, 10, and 12 of age were noticed in calves fed corn diet than in those fed barley, oat, and wheat diets. Occurrence of diarrhea was more frequent in calves fed oat diet than in those provided barley, corn, and wheat diets. Starch sources did not influence respiratory score, rectal temperature, and general appearance score. In conclusion, the calves on corn diet consumed more solid feed and gained greater BW than those fed barley, oat, and wheat diets.  相似文献   

5.
Our objective was to examine the effects of two diets with different cation-anion differences on Ca requirements in the growing calf. Holstein calves (n = 48, 24 males) were blocked at 56 to 70 d after birth (80+/-10 kg of body weight) according to sex and birth date and assigned randomly in a 2 x 3 factorial arrangement of dietary treatments containing cation-anion differences as meq (Na + K) - (Cl + S)/kg of diet dry matter and Ca content of 1) 0 and 0.35%, 2) 0 and 0.50%, 3) 0 and 0.65%, 4) 200 and 0.35%, 5) 200 and 0.50%, and 6) 200 and 0.65%. Feed intake and average daily gain did not differ among treatment groups. Plasma pH and Ca were unaffected by dietary Ca content or dietary cation-anion difference. Plasma Cl and P decreased linearly with increasing Ca content in the diet. Plasma HCO3 increased linearly with increased dietary Ca content. Plasma HCO3 and partial pressure of CO2 were higher in calves fed the 200 compared with calves fed the 0 cation-anion difference diets. Plasma Cl was, however, lower in calves fed the 200 compared with calves fed the 0 meq diets. An interaction of Ca content and dietary cation-anion difference was detected for plasma P content. Urinary pH increased linearly with increasing dietary Ca content. Calves fed the 200 meq dietary cation-anion difference had higher urinary pH values than those fed the 0 meq diet. Urinary P excretion was not altered by dietary cation-anion difference or Ca content of the diet. Calves fed the 0 meq diet had higher urinary cocnentrations of Ca and Cl when compared with those fed the 200 meq diet. Bone ash, P, Ca, Mg, and K content of the 10th rib were not affected by dietary treatments. Breaking strength of the seventh and ninth ribs increased quadratically with increasing dietary Ca content. Dietary cation-anion difference had no effect on the breaking strength of the seventh and ninth ribs. Varying the dietary cation-anion difference from 0 to 200 meq/kg of dietary dry matter had no effect on Ca requirement of the growing calf.  相似文献   

6.
The objective was to determine whether increased energy and protein intake between 2 and 14 wk of age would increase growth rates of heifer calves without fattening. At 2 wk of age, Holstein heifer calves were assigned to 1 of 4 treatments in a 2 x 2 factorial arrangement with 2 levels of protein and energy intake (moderate [M]; high [H]) in period 1 (2 to 8 wk of age) by 2 levels of protein and energy intake (low [L]; high [H]) in period 2 (8 to 14 wk of age) to produce similar initial BW for all 4 treatments. Treatments were ML, MH, HL, and HH, indicating moderate or high energy and protein intake during the first period and low or high intake during the second period. The M diet consisted of a standard milk replacer (21.3% CP, 21.3% fat) fed at 1.1% of BW on a DM basis and a 16.5% CP grain mix fed at restricted intake to promote 400 g of average daily gain (ADG), whereas the L diet consisted only of the grain mix. The H diet consisted of a high-protein milk replacer (30.3% CP, 15.9% fat) fed at 2% of BW on a DM basis and a 21.3% CP grain mix available ad libitum. Calves were weaned gradually from milk replacer by 7 wk and slaughtered at 8 (n = 11) or 14 wk of age (n = 41). In periods 1 and 2, ADG and the gain:feed ratio were greater for calves fed the H diet. Calves fed the H diet were taller after both periods 1 and 2. No difference was observed in carcass composition at 8 wk, but at 14 wk calves fed MH and HH had less water and more fat than calves fed ML and HL. Plasma IGF-I concentrations were greatest for calves fed the H diet during either period. Plasma leptin concentrations were increased in calves fed the H diet during period 1 from 4 to 6 wk of age. Increasing energy and protein intake from 2 to 8 wk and 8 to 14 wk of age increased BW, withers height, and gain:feed ratio. Calves fed the H diet from 8 to 14 wk of age had more body fat than calves fed the L diet. Increased energy and protein intake can increase the rate of body growth of heifer calves and potentially reduce rearing costs.  相似文献   

7.
The objective was to study the effect of feeding diets varying in rumen undegradable protein on DMI, growth, feed efficiency, and carcass composition in Holstein calves from birth to 25 wk of age. Sixty Holstein calves were assigned in a randomized complete block design to one of three dietary treatment groups that differed in rumen undegradable protein as a percentage of total protein. Protein undegradabilities of the TMR fed for ad libitum intake for period 1 (wk 1 to 12 of age) were 33, 37, and 46% and for period 2 (wk 14 to 25 of age) were 30, 34, and 38%. Intake was not different among diets during period 1. During period 2, animals fed the highest and lowest levels of undegradable protein diet consumed less DM, and those animals on the highest undegradable diet had the least amount of crude protein intake. Feed efficiency was increased with increasing rumen undegradable protein for period 2. Carcass composition was not affected by dietary treatment for either 9-10-11 rib section or the half carcass. Prediction equations for carcass protein and fat were calculated for 25-wk Holstein calves using urea space and live weight. These results indicate that the amount of undegradable intake protein currently recommended for growing dairy replacements may not be justified when intake is ad libitum. In the present study, urea space was not found to be beneficial over live weight for predicting carcass protein and fat in intact male or female Holstein calves.  相似文献   

8.
《Journal of dairy science》2021,104(11):11646-11659
Our aim was to evaluate the effects of a low or high dietary phosphorus (P) concentration during the dry period, followed by either a high or low dietary P concentration during the first 8 wk of lactation, on plasma Ca concentrations, feed intake, and lactational performance of dairy cattle. Sixty pregnant multiparous Holstein Friesian dairy cows were assigned to a randomized block design with repeated measurements and dietary treatments arranged in a 2 × 2 factorial fashion. The experimental diets contained 3.6 (Dry-HP) or 2.2 (Dry-LP) g of P/kg of dry matter (DM) during the dry period, and 3.8 (Lac-HP) or 2.9 (Lac-LP) g of P/kg of DM during 56 d after calving period. In dry cows, plasma Ca concentrations were 3.3% greater when cows were fed 2.2 instead of 3.6 g of P/kg of DM. The proportion of cows being hypocalcemic (plasma Ca concentrations <2 mM) in the first week after calving was lowest with the low-P diets both during the dry period and lactation. Plasma Ca concentrations in wk 1 to 8 after calving were affected by dietary P level in the dry period and in the lactation period, but no interaction between both was present. Feeding Dry-LP instead of Dry-HP diets resulted in 4.1% greater plasma Ca values, and feeding Lac-LP instead of Lac-HP diets resulted in 4.0% greater plasma Ca values. After calving, plasma inorganic phosphate (Pi) concentrations were affected by a 3-way interaction between sampling day after calving, and dietary P levels during the dry period and lactation. From d 1 to d 7 postpartum, cows fed Lac-HP had increased plasma Pi concentrations, and the rate appeared to be greater in cows fed Dry-LP versus Dry-HP. In contrast, plasma Pi concentrations decreased from d 1 to d 7 postpartum in cows fed Lac-LP, and this decrease was at a higher rate for cows fed Dry-HP versus Dry-LP. After d 7, plasma Pi concentrations remained rather constant at 1.5 to 1.6 mM when cows received Lac-HP, whereas with Lac-LP plasma Pi concentrations reached stable levels (i.e., 1.3–1.4 mM) at d 28 after calving. Milk production, DM intake, and milk concentrations of P, Ca, fat, protein, and lactose were not affected by any interaction nor the levels of dietary P. It is concluded that the feeding of diets containing 2.2 g of P/kg of DM during the last 6 wk of the dry period and 2.9 g of P/kg of DM during early lactation increased plasma Ca levels when compared with greater dietary P levels. These low-P diets may be instrumental in preventing hypocalcemia in periparturient cows and do not compromise DM intake and milk production. Current results suggest that P requirements in dairy cows during dry period and early lactation can be fine-tuned toward lower values than recommended by both the National Research Council and the Dutch Central Bureau for Livestock Feeding. Caution however is warranted to extrapolate current findings to entire lactations because long-term effects of feeding low-P diets containing 2.9 of g/kg of DM on production and health needs further investigation.  相似文献   

9.
The influence of age, carbohydrate-fat ratios of milk replacers, and development of ruminal function on growth, health, and blood glucose concentrations were evaluated in calves. Colostrum-fed, 3-day-old Holstein bull calves were fed to 12 wk on one of three dietary treatments: 1) a high carbohydrate, low fat (60.5% glucose, 9.5% lactose, and 3% lard) milk replacer; 2) a low carbohydrate, high fat (23% glucose, 12.5% lactose, and 30% lard) milk replacer; and 3) weaning at 6 wk of age from high-fat replacer to a standard calf starter. The high fat milk replacer was superior to low fat milk replacer for total weight gains and efficiency of feed conversion. Rates of weight gain of starter calves were similar to those of calves fed low fat. Calves fed the diet with low fat had a high incidence of diarrhea, an occasional outbreak of a yeast-related ethanol intoxication syndrome, and high concentrations of glucose in urine. Irrespective of milk replacer composition or development of ruminal function, plasma and whole blood glucose concentrations declined rapidly in the first 6 wk. Corpuscular glucose declined steadily with age in all calves. This age-related decrease of blood glucose concentration of calves seems to be a constitutive phenomenon.  相似文献   

10.
Corn silage (CS) has replaced alfalfa hay (AH) and haylage as the major forage fed to lactating dairy cows, yet many dairy producers believe that inclusion of small amounts of alfalfa hay or haylage improves feed intake and milk production. Alfalfa contains greater concentrations of K and Ca than corn silage and has an inherently higher dietary cation-anion difference (DCAD). Supplemental dietary buffers such as NaHCO3 and K2CO3 increase DCAD and summaries of studies with these buffers showed improved performance in CS-based diets but not in AH-based diets. We speculated that improvements in performance with AH addition to CS-based diets could be due to differences in mineral and DCAD concentrations between the 2 forages. The objective of this experiment was to test the effects of forage (CS vs. AH) and mineral supplementation on production responses using 45 lactating Holstein cows during the first 20 wk postpartum. Dietary treatments included (1) 50:50 mixture of AH and CS as the forage (AHCS); (2) CS as the sole forage; and (3) CS fortified with mineral supplements (CaCO3 and K2CO3) to match the Ca and K content of the AHCS diet (CS-DCAD). Feed intake and milk production were equivalent or greater for cows fed the CS and CS-DCAD diets compared with those fed the AHCS diet. Fat percentage was greater in cows fed the CS compared with the AHCS diet. Fat-corrected milk (FCM; 3.5%) tended to be greater in cows fed the CS and CS-DCAD diets compared with the AHCS diet. Feed efficiencies measured as FCM/dry matter intake were 1.76, 1.80, and 1.94 for the AHCS, CS, and CS-DCAD diets, respectively. The combined effects of reduced feed intake and increased FCM contributed to increased feed efficiency with the CS-DCAD diet, which contained 1.41% K compared with 1.18% K in the CS diet, and we speculate that this might be the result of added dietary K and DCAD effects on digestive efficiency. These results indicate no advantage to including AH in CS-based diets, but suggest that improving mineral supplementation in CS-based diets may increase feed efficiency.  相似文献   

11.
Ruminal parameters, rumen development, nutrient digestibilities, and N utilization were estimated in Holstein calves fed starch from different sources. Ground corn, ground barley, ground wheat, and crimped oats were used to formulate 4 isostarch (25% of starter dry matter) pelleted diets. These diets were randomly allocated to calves (16 calves per treatment, 8 female and 8 male) and fed ad libitum along with mixed grass hay throughout the experiment. Ruminal contents and blood were sampled at d 35, 50, and 70 of age to estimate ruminal parameters and plasma β-hydroxybutyrate, respectively. At d 70, twenty-four male calves (6/treatment) were randomly selected, euthanized, and forestomach weight, papillae length (PL), papillae width (PW), rumen wall thickness (RWT), and papillae concentration were measured. At d 63, twenty-four female calves (6/treatment) were randomly selected and moved to metabolism stalls to estimate total tract apparent nutrient digestibilities and N utilization. Female calves were given 2 wk for adaptation to experimental facilities and then total collections of feces and urine were made from d 77 to 84 of age. Ruminal pH at d 35 of age was higher in calves fed corn and oat diets than in those fed barley and wheat diets. Ruminal pH at d 50 and 70 of age was the lowest in calves on barley diets followed by those on oat and wheat diets and then by those on the corn diet. Ruminal total volatile fatty acid concentrations at d 35 of age were greatest in calves fed corn or wheat diets followed by those fed barley and oat diets. Calves on corn and wheat diets maintained greater ruminal volatile fatty acids concentrations at d 50 and 70 of age. Ruminal ammonia, acetate, propionate, butyrate, and blood β-hydroxybutyrate concentrations were also greater in calves on the corn and wheat diets. Full and empty weights of forestomach, PL, PW, RWT, and papillae concentrations were greater in calves on corn and wheat diets. Daily average intake of nutrients (dry matter, crude protein, neutral detergent fiber, starch, Ca, and P) was greater in calves fed corn and wheat diets than in those fed barley and oat diets. Starch source did not influence the total tract apparent digestibilities of nutrients in calves. Daily N retention (g/d) was greatest on the corn diet followed by the wheat diet and then the barley and oat diets. In conclusion, calves on a corn diet have greater ruminal capacity to accommodate feed bulk. More physically and metabolically functional rumens in calves on corn and wheat diets probably resulted in greater feed consumption and N retention.  相似文献   

12.
《Journal of dairy science》2022,105(3):2326-2342
Concentrate-rich starter feeds are commonly fed to dairy calves to stimulate early solid feed intake and growth performance; yet, starter feeds lacking in forage fiber may jeopardize gut development. This research primarily aimed to test a complete or partial replacement of concentrates with hay of different qualities in the starter feed on nutrient intake, growth performance, apparent total-tract digestibility (ATTD) of nutrients, and blood metabolites in dairy calves. Immediately after birth, 40 Holstein Friesian calves were randomly allocated to 1 of 4 starter diets, which differed in hay quality and concentrate inclusion [MQH = 100% medium-quality hay, 9.4 MJ of metabolizable energy (ME), 149 g of crude protein (CP), 522 g of neutral detergent fiber (NDF)/kg of dry matter (DM); HQH = 100% high-quality hay, 11.2 MJ of ME, 210 g of CP, 455 g of NDF/kg of DM; MQH+C = 30% medium-quality hay + 70% starter concentrate; HQH+C = 30% high-quality hay + 70% starter concentrate]. The concentrate consisted mainly of grains, oilseeds, and mineral supplements (13.5 MJ of ME, 193 g of CP, 204 g of NDF/kg of DM). Calves were used in the experiment from d 1 to 99 of life. During the first 4 wk, all calves were fed acidified whole milk ad libitum, and afterward they were gradually weaned from wk 5 to 12. Calves had ad libitum access to their starter diets and water throughout the experiment. Milk, water, and solid feed intake was recorded daily, live weight was measured once a week, and blood samples were collected on d 1, 3, 7, 21, 49, 77, and 91 and analyzed for selected metabolites. The ATTD was measured in wk 14 of life. Total DM intake and daily weight gain of calves were not affected by the starter feed during the first 8 wk of life. However, from wk 9 to 14, calves fed the MQH diet had lower DM, ME, and CP intake and gained less weight than calves from the other experimental groups. Feeding the HQH diet resulted in similar CP and ME intake and growth performance compared with calves receiving diets containing concentrates. Furthermore, feeding the HQH diet improved the ATTD of NDF, resulting in similar ATTD of organic matter with the HQH+C and MQH+C groups. Interestingly, calves fed the HQH+C diet showed less sorting for concentrate, compared with the MQH+C group. Concentration of blood metabolites, including glucose, lactate, insulin, nonesterified fatty acids, triglycerides, and total protein, did not differ after the first week of life. However, serum β-hydroxybutyrate was higher in calves fed the HQH diet starting from wk 11. Both groups fed the hay-only diets maintained higher cholesterol levels after weaning compared with the groups fed hay-concentrate mixtures. In conclusion, feeding high-quality hay can fully replace starter concentrates in the feeding of dairy calves without adverse effects on performance during the rearing period, while increasing forage fiber intake and utilization, which enhanced ruminal ketogenesis and cholesterogenesis around weaning. Further research is needed to evaluate long-term effects of feeding high-quality hay on health and development of dairy calves, especially in terms of the observed improvements in ruminal ketogenesis and cholesterogenesis around weaning.  相似文献   

13.
《Journal of dairy science》1988,71(8):2187-2192
Twenty-four Holstein bull calves, 12 Holstein heifer calves, and 6 Jersey bull calves were assigned to a 2 × 3 factorial experiment at 8 to 9 wk of age. Three concentrations (.26, .34, and .41%) and two sources (feed grades monoammonium phosphate and dicalcium phosphate) of dietary P were fed during a 10-wk trial. The biological availability of monoammonium phosphate was equal to dicalcium phosphate as a supplemental P source. Increasing dietary P from .26 to .34% increased feed intake, body weight gain, plasma inorganic P, plasma Mg, bending moment of the tibia and ninth rib, percentage ash, and ash content (P and Mg) of the 7th and 10th ribs and lowered plasma Ca. Only plasma inorganic P increased from .34 to .41%. Treatment means for .26, .34, and .41% P, respectively, were feed intake (kg.d−1) 2.98, 3.48, and 3.34; daily body weight gain (kg.d−1) .83, .94, and .92; wk 9 and 10 plasma inorganic P (mg-100 ml−1) 6.08, 8.38, and 9.05; bending moment (kg.cm) of the 9th rib 31.6, 47.6, and 40.7 and tibia 1314.84, 1783.94, and 1751.00. These results indicate a requirement for calves greater than the .26% P currently recommended.  相似文献   

14.
Three experiments were conducted to determine the effects of acidification of milk replacers containing soy protein concentrate on diet digestibility and growth of Holstein bull calves. In Experiment 1, six calves (6 wk old) were fed at 10% of BW/d either acidified milk replacer containing soy protein concentrate or untreated milk replacer containing soy protein concentrate. Replacers were reconstituted to 12.5% DM for 10-d adjustment and 4-d collection periods to determine digestibility and N balance. Digestibilities of DM, ether extract, and N were similar between treatments. Nitrogen retention and N retention as a percentage of that absorbed were higher for calves fed the acidified diet. In Experiment 2, 20 calves (1 wk old) were fed diets identical to those diets fed in Experiment 1 at 20% of BW/d for 4 wk. Calves were allowed to adjust to the diet for 5 d. Growth parameters were measured and amount of feed offered was adjusted weekly. Calves fed the untreated diet had higher daily weight gains, girth gains, height gains, and better feed utilization. In Experiment 3, 21 calves were fed either the aforementioned diets or a replacer based on milk proteins at 10% of BW/d (12.5% DM) for 4 wk. Growth parameters were measured and DM intakes were adjusted weekly. Growth and feed conversion were similar across diets. Replacers containing soy protein concentrate or large amounts of whey may need to be supplemented with additional methionine to maximize rate of gain.  相似文献   

15.
Forty-eight Holstein calves were fed one of four liquid diets from 3 to 30 days of age to compare sodium benzoate, propionic acid, and formaldehyde as preservatives for colostrum. Colostrum batches were fermented at temperatures of 20 degrees C or higher. Diets were 2.73 kg of 1) naturally fermented colostrum, or colostrum treated with 2) sodium benzoate (.5% by weight), 3) propionic acid (1.0% by weight), or 4) formaldehyde (.05% by weight). Colostrum diets were diluted with .91 kg water. Prior to feeding, 25 g. sodium bicarbonate was added to liquid diets of one-half the calves on each treatment. Liquid diets were fed once daily. Water and a 15% crude protein complete starter were offered for ad libitum consumption. Calves were weaned abruptly at 30 days of age and received only water and starter from 31 to 44 days of age. Daily gain from 0 to 4 wk and 0 to 6 wk favored calves fed colostrum treated with sodium benzoate or propionic acid. Gains from 0 to 6 wk were .33, .44, .45, and .32 kg/day for the four diets, and feed efficiencies (kg dry matter intake/kg gain) were 3.23, 2.36, 2.76, and 2.89 during the same period. Addition of sodium bicarbonate to colostrum diets improved intake during the 1st wk of feeding. Gain and feed efficiency were similar during wk 0 to 4 but favored slightly calves not receiving sodium bicarbonate during the overall study, wk 0 to 6. Daily gain and efficiencies during wk 0 to 6 were .41 and 2.53 for calves without .36 and 3.01 with sodium bicarbonate added to colostrum diets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A study was conducted to determine the impact of dietary P intake on vitamin D metabolism and incidence of parturient paresis in aged dairy cows. Thirty dairy cows (10/group) were fed one of three experimental diets for approximately 28 d precalving. Phosphorus intake was .7, 1, or 3 times daily maintenance requirement and Ca intake was three times daily maintenance requirement for all cows. There was a 20% incidence of parturient paresis in each group. Prepartum dietary P intake had no effect on precalving or calving plasma Ca concentrations. Cows fed the low P (.7 times) diet had higher plasma Ca at 3 and 5 d postcalving than did cows fed P at 1 or 3 times maintenance. Plasma phosphorus concentrations reflected dietary P intake. Dietary P intake had no effect on plasma Mg, free hydroxyproline, 1,25-dihydroxyvitamin D, or 24,25-dihydroxyvitamin D concentrations. The range in dietary P from .7 to 3 times maintenance requirement had no effect on the incidence of parturient paresis. However, it did appear to influence Ca homeostasis during the postpartum period as cows fed the low P diet had higher plasma calcium concentrations postcalving. This may be a result of the low P diet enhancing intestinal C absorption by a vitamin D-mediated transport mechanism.  相似文献   

17.
Influence of dietary Ca on Se metabolism was studied with 16 intact male Holstein calves averaging 86 kg. Calves were assigned randomly and fed one of four diets containing, .17, .67, 1.31, and 2.35% Ca at 3% of their body weight for 4 wk. The diets contained .062 ppm Se and .34% P. Four days prior to the end of the experiment, calves were dosed orally with radioactive 75Se. Dietary Ca had no significant effect on 75Se absorption. There was a slight curvilinear relationship between apparent 75Se absorption and dietary Ca intakes. Urinary excretion of 75Se and stable Se tended to decrease with increasing dietary Ca, but differences were not significant. No significant differences were found in concentration of 75Se in several tissues. Kidney and liver had the highest concentration with that in kidney being about four times that of liver. Apparent 75Se absorption was decreased 10 to 6%, respectively, in calves fed extremely low and high amounts of Ca, compared with those receiving the requirement (.67% Ca). These small reductions along with a small R2 suggest that dietary Ca probably is of little practical importance relative to Se metabolism in calves.  相似文献   

18.
The objectives of this study were to investigate the effect of starch and protein interaction on rumen environment, in situ digestion, and total-tract digestibility of nutrients in weaned dairy calves between 8 and 16 wk of age. Sixteen rumen-cannulated calves were randomly divided into 4 dietary treatment groups with 4 calves fed in each treatment. The treatment diets had 2 levels of starch [18%, low starch (LS), or 38%, high starch (HS)] and 2 levels of protein [16%, low protein (LP), or 22%, high protein (HP)] on a dry matter (DM) basis in calf grower: (1) LPLS, (2) LPHS, (3) HPLS, and (4) HPHS. Calves were fed for ad libitum intake (95% assigned grower and 5% grass hay), and refusals were collected weekly. Total-tract digestibility collection and in situ digestibility procedures were performed for each calf at 11 and 15 wk. Samples for in situ digestibility, grass hay (GH), soybean hulls (SBH), wheat middlings (WM), ground corn (GrC), and soybean meal (SBM) were incubated for 9 and 24 h. There was no starch and protein interaction on total-tract digestibility of calves. Total-tract DM, neutral detergent fiber (NDF) and acid detergent fiber (ADF) digestibility, and feed efficiency were affected by both protein and starch inclusion level in calf diet. Total-tract starch digestibility was lower for LS diets. Dry matter digestibility and feed efficiency were greater in calves fed HP and HS diets compared with calves fed LP and LS diets, respectively. Fiber digestibility (NDF and ADF) was less in calves fed HS diets compared with calves fed LS diets but was greater in calves fed HP diets compared with calves fed LP diets. Level of protein did not affect in situ DM and NDF disappearance of GH, but HP increased in situ DM and NDF disappearance of SBH. High-starch diets decreased DM and NDF disappearance of both GH and SBH. At 20 h after feeding, ruminal pH was 0.51 unit higher in calves fed HPHS compared with calves fed LPHS. Total ruminal VFA and proportion of propionate was greater with HS versus LS, whereas proportion of acetate was greater with LS versus HS. The DM disappearance of SBM and WM and NDF disappearance of WM was greater for calves fed HPHS compared with calves fed LPHS at 11 wk of age. In our study, when HP was fed with HS, rumen pH, in situ digestion of WM and SBM, and total-tract digestion of DM, NDF, and ADF increased. This provides evidence for starch–protein interaction in the rumen of recently weaned dairy calves. Improvements in total-tract and in situ digestibility suggest that both protein and starch levels are important for 8- to 16-wk-old calves.  相似文献   

19.
Thirty 1-wk-old male Holstein calves were allotted randomly to six groups into a 3 X 2 factorial design. The control diet was skim milk, whey, tallow, vitamins, and minerals. Either Alpha-Floc or pectin was added at 5% dry matter. Supplementary iron was added at 30 and 50 ppm (dry basis). The six diets were fed for 14 wk. Calves without supplementary iron were mildly anemic at 6 wk and severely at 14 wk (7 and 5 g/dl hemoglobin). At 14 wk, both fibers had decreased blood hemoglobin in calves given supplementary iron. Feed refusal began at 8 wk with the appearance of anemia for calves unsupplemented with iron, but both Alpha-Floc and pectin decreased feed refusal. Supplementary iron practically eliminated feed refusal. Supplementary iron improved average daily gain and feed conversion, but dietary fibers had no effect. Adding Alpha-Floc and pectin to the diets reduced frequency of diarrheic feces. Mean carcass weight of calves fed supplementary iron was 11.6% higher than that of unsupplemented calves. Supplementary iron decreased liver lipids and increased glutamic oxaloacetic transaminase activity in blood plasma.  相似文献   

20.
Bioavailability of P from defluorinated phosphate and dicalcium phosphate and the P requirement were studied with 63 male Holstein calves. A P depletion diet containing .08% total P on a dry matter basis was fed to all animals for 4 wk beginning at 6 wk of age and 61 kg weight. Calves developed typical signs of P deficiency. The depletion period was followed by a 6-wk experimental period in which the same depletion diet was used as a control. Phosphorus from each of the two sources was added to make diets containing .14, .20, and .32% total P. Source of supplemental P did not affect weight gains, feed consumption, feed efficiency, serum inorganic P, serum alkaline phosphatase, or bone ash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号