首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
In free-floating mode, space manipulator systems have their actuators turned off, and exhibit nonholonomic behavior due to angular momentum conservation. The system is underactuated and a challenging problem is to control both the location of the end effector and the attitude of the base, using manipulator actuators only. Here a path planning methodology satisfying this requirement is developed. The method uses high order polynomials, as arguments in cosine functions, to specify the desired path directly in joint-space. In this way, the accessibility of final configurations is extended drastically, and the free parameters are determined by optimization techniques. It was found that this approach leads always to a path, provided that the desired change in configuration lies between physically permissible limits. Physical limitations, imposed by system’s dynamic parameters, are examined. Lower and upper bounds for base rotation, due to manipulator motions, are estimated and shown in the implementation section. The presented method avoids the need for many small cyclical motions, and uses smooth functions in the planning scheme, leading to smooth configuration changes in finite and prescribed time.  相似文献   

2.
We study the control of a prismatic‐prismatic‐revolute (PPR) robot manipulator subject to a nonholonomic jerk constraint, i.e., a third‐order nonintegrable design constraint. The mathematical model is obtained using the method of Lagrange multipliers. The control inputs are two forces and a torque applied to the prismatic joints and the revolute joint, respectively. The control objective is to control the robot end‐effector movement while keeping the transverse jerk component as zero. The main result of the paper is the construction of a feedback control algorithm that transfers the manipulator from any initial equilibrium configuration to the zero equilibrium configuration in finite time. The effectiveness of the algorithm is illustrated through a simulation example.  相似文献   

3.
In this paper, adaptive control of free-floating space manipulators is considered. The dynamics based on the momentum conservation law for the free-floating space manipulator has non-linear parameterization properties. Therefore, the adaptive control based on a linear parameterization model cannot be used in this dynamics. In this paper, the dynamics of the free-floating space manipulator system are derived using the Dynamically Equivalent Model (DEM) approach. The DEM is a fixed-base manipulator system and allows us to linearly parameterize the dynamic equations. Using this linearly parameterized dynamic equation, an adaptive control method is developed to control the system in joint space. Parameter identification and torque calculations are done using the DEM dynamics. Simulations show that the tracking errors of the manipulator joints to a given desired trajectory become zero when the calculated torques act on the joints of the space manipulator system.  相似文献   

4.
A manipulator mounted on a moving vehicle is called a mobile manipulator. A mobile manipulator with an appropriate suspension system can pass over uneven surfaces, thus having an infinite workspace. If the manipulator could operate while the vehicle is traveling, the efficiency concerning with the time and energy used for stopping and starting will be increased.This paper presents the kinematic and dynamic modeling of a one degree of freedom manipulator attached to a vehicle with a two degrees of freedom suspension system. The vehicle is considered to move with a constant linear speed over an uneven surface while the end effector tracks a desired trajectory in a fixed reference frame. In addition, the effects of dynamic interaction between the manipulator and vehicle (including the suspension system"s effects) have been studied. Simulation results from straight line trajectory are presented to illustrate these effects.  相似文献   

5.
The purpose of this study is to control the position of an underactuated underwater vehicle manipulator system (U‐UVMS). It is possible to control the end‐effector using a regular 6‐DOF manipulator despite the undesired displacements of the underactuated vehicle within a certain range. However, in this study an 8‐DOF redundant manipulator is used in order to increase the positioning accuracy of the end‐effector. The redundancy is resolved according to the criterion of minimal vehicle and joint motions. The underactuated underwater vehicle redundant manipulator system is modeled including the hydrodynamic forces for the manipulator in addition to those for the autonomous underwater vehicle (AUV). The shadowing effects of the bodies on each other are also taken into account when computing the hydrodynamic forces. The Newton‐Euler formulation is used to derive the system equations of motion including the thruster dynamics. In order to establish the end‐effector trajectory tracking control of the system, an inverse dynamics control law is formulated. The effectiveness of the control law even in the presence of parameter uncertainties and disturbing ocean currents is illustrated by simulations.  相似文献   

6.
Designing a real-time visual tracking system to catch a goldfish is a complex task because of the large amount of streaming video data that must be transmitted and processed immediately when tracking the goldfish. Usually, building such visual servoing systems requires the application of high-cost specialized hardware and the development of complicated visual control software. In this paper, a novel low-cost, real-time visual servo control system is presented. The system uses stereo vision consisting of two calibrated cameras to acquire images of the goldfish, and applies the continuously adaptive mean shift (CAMSHIFT) vision-tracking algorithm to provide feedback of a fish’s real-time position at a high frame rate. It then employs a 5-axis robot manipulator controlled by a fuzzy reasoning system to catch the fish. This visual tracking and servoing system is less sensitive to lighting influences and thus performs more efficiently. Experiments with the proposed method yielded very good results, as the system’s real-time 3D vision successfully tracked two fish and guided the manipulator, which has a net attached to its end effector, to catch one of them.  相似文献   

7.
空间机器人在执行捕获任务时目标与机械臂的碰撞给基座带来的姿态扰动是致命的针对目标捕获时基座姿态扰动最小化问题,在建立了自由飘浮空间机器人捕获目标动力学模型的基础上,提出了自由飘浮状态下基座零扰动冲击方向的概念,给出了捕获过程中基座姿态无扰的条件是碰撞冲击力方向与基座零扰动冲击方向一致,并用角动量的分布与传递解释了零扰动...  相似文献   

8.
By a mobile manipulator we mean a robotic system composed of a non-holonomic mobile platform and a holonomic manipulator fixed to the platform. A taskspace of the mobile manipulator includes positions and orientations of its end effector relative to an inertial coordinate frame. The kinematics of a mobile manipulator are represented by a driftless control system with outputs. Admissible control functions of the platform along with joint positions of the manipulator constitute the endogenous configuration space. Endogenous configurations have a meaning of controls. A map from the endogenous configuration space into the taskspace is referred to as the instantaneous kinematics of the mobile manipulator. Within this framework, the inverse kinematic problem for a mobile manipulator amounts to defining an endogenous configuration that drives the end effector to a desirable position and orientation in the taskspace. Exploiting the analogy between stationary and mobile manipulators we present in the paper a collection of regular and singular Jacobian inverse kinematics algorithms. Their performance is evaluated on the basis of intense computer simulations.  相似文献   

9.
针对冗余机械臂的冗余特性与相关RRT*算法在规划机械臂末端路径的应用中存在的搜索效率较低、收敛性不稳定以及没有充分考虑到机械臂末端几何构型与自身运动特性对路径规划影响的问题,提出一种改进策略。首先,引入一种基于根尾节点连线夹角的采样点选择方式,并设置目标逼近区域。根据连续采样成功次数动态选择改进采样与随机采样。接着,将双树扩展策略与上述方法相结合。最后,将初始可行路径进行二次重连得到最终的优化路径。通过验证,改进双树RRT*方法能够有效地提升搜索效率、收敛性以及路径的优越性。虚拟碰撞体与胶囊碰撞体的引入也能较好地应对机械臂末端结构与运动特性带来的影响。使用Mujoco物理仿真引擎进行机械臂运动验证,证明该策略可以为冗余机械臂末端规划出一条较优的可行路径。  相似文献   

10.
针对冗余度机械臂加速度非零初始值的情况,探讨了一种基于伪逆的加速度层优化控制方案。利用约束函数以使关节从零初始加速度开始运动,并引入关节速度/位置的反馈信息,采用速度/位置误差补偿方法改善运动学方程。通过上述方案对机械臂进行优化控制,可及时减小末端执行器的速度误差和位置误差,从而保证轨迹跟踪的精度。利用MATLAB软件对平面三连杆机械臂跟踪圆形和星形轨迹进行了实验。实验表明末端执行器位置误差在5s内达到10-6 m精度,机械臂能顺利完成跟踪任务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号