首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of growth temperature and deposition thickness on the formation, size, density, and uniformity of InAs and In0.5Ga0.5As islands grown by metalorganic vapor phase epitaxy on a germanium substrate are investigated. Atomic force microscopy images show InAs islands when 0.8–2.0 monolayers are deposited. At the nominal deposition thickness of 2.0 monolayers an island density of 2.5×1010 cm–2 is achieved. InAs islands covered with a GaAs layer show low-temperature luminescence at around 1.15 eV. The In0.5Ga0.5As islands grown at 550 °C show a maximum density of 3.5×1010 cm–2 at a nominal three monolayers deposition thickness.  相似文献   

2.
An effect of alloying two ferromagnetic semiconductors (In,Mn)As and (Ga,Mn)As on the ferromagnetic properties of resultant (In,Ga,Mn)As alloys is reported. For conditions close to lattice-matching to InP substrates, y = 0.53 in (In y Ga1–y )1–x Mn x As, ferromagnetism up to Curie temperatures T C = 100–110 K could be achieved for a Mn composition x = 0.13. Trends in the Curie temperature in (In,Ga,Mn)As are compared with (Ga,Mn)As and (In,Mn)As as a function of Mn content. Hole concentrations determined from magnetotransport, taking into account the anomalous Hall contribution to Hall resistance, gives p/Mn = 0.03 ratio to Mn composition in metallic case for x = 0.13. We mention the possible role of chemical ordering (short range) of Mn impurity atoms on hole concentration and, consequently, for the ferromagnetic properties.  相似文献   

3.
We have fabricated and characterized three types of InAs quantum dots (QDs) with different InxGa1-xAs capping layers. Post-growth atomic force microscopy measurements show that the In0.2Ga0.8As/InAs structure has a smooth surface (dot-in-well structure), whereas the In0.4Ga0.6As/InAs structure revealed large QDs with a density similar to that underneath InAs QDs on GaAs (dot-in-dot). With increasing In mole fraction of the capping layer and increasing In0.4Ga0.6As thickness, the energy position of the room-temperature photoluminescence (PL) peak is red-shifted. The quantum dot-in-dot structure emits stronger room-temperature PL than does the quantum dot-in-well structure. With a spatially distributed strain in the InAs quantum dot, we have solved the three-dimensional Schr?dinger equation by the Green's function theory for the eigenvalues and eigen wave functions. It is concluded that the ground state increases its wave function penetration into the low-barrier InxGa1-xAs capping layer so that its energy position is red-shifted. The reduced PL peak intensity of the dot-in-well (compared with GaAs covered dots) is due to the reduced overlapping between the ground state and the extended states above the GaAs barrier. The overlapping reduction in the dot-in-dot is over compensated for by the reduced relaxation energy (full width at half-maximum), indicating the importance of the sample quality in determining the PL intensity.  相似文献   

4.
Abstract

Semiconductor quantum dot (QD) nanostructures have attracted increased interest in recent years because of their electronic and optical properties. A common way to make QDs is to grow a thin layer of material on a substrate with a different lattice constant. The strain between the layers induces the formation of three-dimensional islands. The electronic properties of the islands are mainly determined by their size, shape and composition. While the size and shape of QDs have been the focus of many studies, only recently has their composition been investigated. Experimental studies of the composition of QDs are reviewed and compared with the available theoretical models of QD growth. It is found that no model in the literature can satisfactorily predict QD size, shape and composition. Experimental results from studies of QDs grown under similar conditions vary substantially. Most authors, however, agree that the average composition of the QDs is different from the nominal composition of the deposited material. The composition is also found to vary from top to bottom of the QDs, which is found to have a significant influence on the electronic properties.  相似文献   

5.
We present a systematic study of closely In(Ga)As/InAs quantum rings (QRs) grown by molecular beam epitaxy (MBE). Photoluminescence (PL) experiments show a strong filtering effect in the ring being stacked and simultaneous linewidth narrowing for the appropriate layer thickness (thinner thickness). If the spacer thickness is further reduced, a strong coupling between the nanostructures is produced and the signal shifts to low energy.  相似文献   

6.
The self-assembly technique of forming three-dimensional islands in the growth of highly strained semiconductor heterostructures has emerged as a powerful technique for the realization of an ordered array of quantum dots. Such quantum dots have been incorporated into the active region of optoelectronic and microelectronic devices in the hope of improving device performance or engineering new ones. Here we present the growth, optical characterization, and device applications for self-assembled InGaAs/GaAs quantum dots.  相似文献   

7.
Carrier injection and subsequent radiative recombination in two vertically stacked (but electronically only weakly coupled) layers of InAs/GaAs self-assembled quantum dots (SADs) embedded in the intrinsic region of a double hetero p-i-n structure was investigated by electroluminescence (EL) spectroscopy in the temperature range from 20 to 300 K. In such structures the filling of the SADs by charge carriers strongly depends not only on the applied voltage, but also on the relative position of the SAD layers within the i-region and on the temperature. The experimental data provide evidence of the dominant role of hole dynamics in the recombination processes in the stacks of SADs. The difference of the electronic structure of the SADs in the top and bottom layers is reflected by independent contributions of the two quantum dot layers to the electroluminescence from the SADs. The possibility to tune the emission spectra by varying the thickness of the GaAs layer between neighbouring SAD layers and by using the indium flush technique is demonstrated.  相似文献   

8.
Growth of GaAs and In(x)Ga(1-x)As nanowires by the group-III assisted molecular beam epitaxy growth method on (001)GaAs/SiO(2) substrates is studied in dependence on growth temperature, with the objective of maximizing the indium incorporation. Nanowire growth was achieved for growth temperatures as low as 550?°C. The incorporation of indium was studied by low temperature micro-photoluminescence spectroscopy, Raman spectroscopy and electron energy loss spectroscopy. The results show that the incorporation of indium achieved by lowering the growth temperature does not have the effect of increasing the indium concentration in the bulk of the nanowire, which is limited to 3-5%. For growth temperatures below 575?°C, indium rich regions form at the surface of the nanowires as a consequence of the radial growth. This results in the formation of quantum dots, which exhibit spectrally narrow luminescence.  相似文献   

9.
The effects of a piezoelectric field on the spectroscopic properties of strained InAs/GaAs self-assembled quantum dot (QD) heterostructures grown on (N11) substrates with A or B termination are presented. An increasing blue shift of photoluminescence (PL) band was observed with increasing excitation density. The PL blue shift of (N11) quantum dots measured at the highest excitation grows with 1/N and shows an asymmetric dependence on whether the substrate has A or B termination. We attributed the blue shift of the photoluminescence band to the screening of the piezoelectric field by the photo-generated carriers, leading to a reduction of the piezoelectric induced quantum confined Stark effect.  相似文献   

10.
Ferromagnetic self-assembled alpha-MnAs quantum dots (QD) were grown epitaxially on metal catalyst-grown InAs nanowires (NW) by chemical vapor deposition. Magnetic force microscopy measurements demonstrated that the QDs are stable, single-domain ferromagnets with T(c) values of approximately 310 K. Single QD switching was demonstrated at fields as low as 60 Oe. The hybrid ferromagnetic/semiconductor QD/NW properties provide a promising basis for the development of nanowire spin-valves and magnetic memory devices.  相似文献   

11.
Picosecond bleaching dynamics of vertically stacked self-assembled quantum dots (QDs) is investigated by means of time-resolved pump-probe differential reflection spectroscopy (TRDR) at room temperature (RT). We observe that the absorption spectrum, which represents the QD density of states at RT, is strongly shifted with respect to the photoluminescence spectrum. This shift can not be interpreted by carrier emission and re-trapping alone. TRDR allows us to study the dynamics of the pump generated carriers within the QDs. From the time-resolved measurements, we detect that the bleaching decay time has a strong energy dependence and is dominated by radiative and nonradiative recombination at low energy and by carrier emission at high energy.  相似文献   

12.
《Materials Letters》2007,61(8-9):1619-1621
In this work, it has been demonstrated that metal–semiconductor–metal (MSM) photodiodes (PDs) with InGaN self-assembled quantum dots (QDs) were fabricated and compared with conventional InGaN MSM photodiodes. The scanning near-field optical microscope (SNOM) results revealed that such InGaN nanostructures could have better absorption for the near-field light with the wavelength of 457–514 nm. It was found that the InGaN QD photodiode with lower dark current can operate in the normal incidence mode; we could achieve a much larger photocurrent to dark current contrast ratio from MSM photodiodes with nanoscale InGaN quantum dots. It was also found that the measured responsivity of MSM photodiodes with QDs and without QDs approximated to the same in the range of 390–460 nm. Furthermore, the photodiodes with QDs showed higher spectral response than that of the photodiodes without QDs at wavelengths < 350 nm and > 480 nm.  相似文献   

13.
A great step forward in science and technology was made when it was discovered that lattice mismatch can be used to grow highly ordered, artificial atom-like structures called self-assembled quantum dots. Several groups have in the meantime successfully demonstrated useful infrared photodetection devices which are based on this technology. The new physics is fascinating, and there is no doubt that many new applications will be found when we have developed a better understanding of the underlying physical processes, and in particular when we have learned how to integrate the exciting new developments made in nanoscopic addressing and molecular self-assembly methods with semiconducting dots. In this paper we examine the scientific and technical questions encountered in current state of the art infrared detector technology and suggest ways of overcoming these difficulties. Promoting simple physical pictures, we focus in particular on the problem of high temperature detector operation and discuss the origin of dark current, noise, and photoresponse.  相似文献   

14.
We have investigated the photoluminescence (PL) and growth properties of self-assembled InAs/GaAs quantum dots (QD) grown on (211)A-oriented GaAs substrate in a low coverage region. At the onset of the QD formation in the Stranski–Krastanov mode, structures of QD on (211)A substrate were quite different from those on (100) substrate. The uniformity of size distribution was better and the density was higher than that grown on (100) substrate. We found a PL peak at 1.32 eV when the InAs coverage was 1.57 ML. Another PL peak gradually appeared at 1.37–1.42 eV with increasing InAs coverage. The peaks at 1.32 and 1.37–1.42 eV were attributed to the emission from a defect-related QD and a typical QD, respectively. When the InAs coverage exceeded 1.89 ML, the QD density decreased with increasing InAs coverage, due to the coalescence of QD. The samples studied here showed PL spectra having a larger intensity and narrower full width at half-maximum compared with that grown on (100) substrate.  相似文献   

15.
We present results on spectrally resolved photo-resistance studies of optically-induced charge storage effects in self-organized InAs quantum dots (QDs). The stored charge can be detected and erased electrically. The investigated structure designed for electron or hole storage in the QDs consists of a modulation doped two-dimensional channel which was grown on top of a layer of InAs QDs, separated by an asymmetric tunnel barrier. Our results show that optical QD charging with spectral resolution provides information on the charging dynamics and on the quantity and spectral dependence of stored charges in the QDs. This is a novel technique by which QD excitation spectra can be studied. Spectrally resolved storage effect measurements on electrons as well as on holes allowed to investigate thermal redistribution of carriers in the quantum dot layer. It was found that only at low temperatures carriers can be stored selectively over long time scales in the InAs QDs. The charge storage effect is observable for several hours at temperatures up to 170 K, for several seconds up to 250 K due to an increase in thermal emission of stored charges.  相似文献   

16.
We have investigated the magnetotransport properties of field-effect transistors (FET) having a III–V ferromagnetic semiconductor channel layer. One can control not only the ferromagnetic transition temperature T C but also the magnetization and the coercive force of (In,Mn)As channel layers isothermally and reversibly by gate electric fields. A small change of the magnetization upon application of gate electric fields is also observed in FETs with a (Ga,Mn)As channel. Results on a (Al,Ga,Mn)As channel FET are also presented.  相似文献   

17.
We review the recent advances in the experimental and theoretical investigation of alloy distribution in semiconductor quantum dots (QDs). X-ray diffraction analysis, as well as wet chemical etching, represent two powerful techniques that are able to measure the alloy distribution inside the dots. From a theoretical point of view, determination of the alloy distribution follows from consideration of the thermodynamic quantities involved in the formation and stability of the QD: strain energy, surface energy, internal energy and entropy. Starting from the alloy distribution, the investigation of its role in influencing the electronic and optical properties of QDs is possible. Tight binding and ab initio calculation show the band structure of non-uniform alloyed Ge/Si and InAs/GaAs quantum dots. While for Ge/Si the indirect bandgap does not offer a strong photoluminescence spectra, direct-bandgap materials offer intense light emission, including the range for telecom applications (1.77–1.37 μm). Control of alloying inside the QDs allows for the tailoring of their band structure and photoluminescence spectra, where high alloy gradients induce a blue-shift of the spectra, compared to a more uniform composition.  相似文献   

18.
The authors demonstrate how lateral electric fields can be used to precisely control the exciton-biexciton splitting in InGaAs quantum dots. By defining split-gate electrodes on the sample surface, optical studies show how the exciton transition can be tuned into resonance with the biexciton by exploiting the characteristically dissimilar DC Stark shifts. The results are compared to model calculations of the relative energies of the exciton and biexciton, demonstrating that the tuning can be traced to a dominance of hole-hole repulsion in the presence of a lateral field. Cascaded decay of the exciton-biexciton system enables the generation of entangled photon pairs without the need to suppress the fine structure splitting of the exciton. Our results demonstrate how the exciton-biexciton system can be electrically controlled.  相似文献   

19.
研究了内嵌InAs量子点的异质结场效应晶体管在室温和低温下的电学特性,获得了量子点影响下器件的输出特性曲线。在室温下,通过分别测试在近红外光照和量子点充电条件下器件的Ⅰ-Ⅴ特性,证明了量子点通过类似纳米悬浮栅的作用,对邻近沟道的二维电子气施加影响。在低温下观察到器件漏电流出现负微分电导现象。这一现象可由2DEG和量子点之间的共振隧穿来解释。这些结果提供了一种新的操作传统场效应晶体管的方法,并有望制成新型量子点存储器。  相似文献   

20.
We investigate the effect of uniaxial stress on InGaAs quantum dots in a charge tunable device. Using Coulomb blockade and photoluminescence, we observe that significant tuning of single particle energies (≈-0.22 meV/MPa) leads to variable tuning of exciton energies (+18 to -0.9 μeV/MPa) under tensile stress. Modest tuning of the permanent dipole, Coulomb interaction and fine-structure splitting energies is also measured. We exploit the variable exciton response to tune multiple quantum dots on the same chip into resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号