首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue elasticity can be estimated from displacement and strain images acquired under controlled deformation. We extend this approach for coronary arteries, deformed and imaged by an integrated angioplasty balloon and ultrasonic imaging probe. Because the lumen cross section of a severely occluded artery is not circular, we have also developed a technique to perform all motion computations in the reference frame of the lumen's geometric center. This coordinate system is independent of the imaging catheter and consequently referencing to this frame removes artifacts associated with probe motion within the balloon during deformation. Displacements and strains estimated by phase-sensitive correlation-based speckle tracking were used to distinguish arterial plaques in simulated coronary arteries of differing elastic moduli: hard, soft, and homogenous. We have also applied these methods to images of a homogeneous gelatin phantom collected with the integrated probe. The maximum phantom displacement was about 40 pm, and the maximum radial normal strain was about 4% (absolute value). The spatial dependence of these quantities shows good agreement with theoretically predicted values  相似文献   

2.
An integrated compliant balloon ultrasound catheter was developed to allow greater deformations in strain imaging with intravascular ultrasound. A 64-element circumferential array was placed inside a compliant silicone balloon catheter to capture real-time, phase-sensitive radio frequency (RF) data during deformation experiments. Strains over 40% could be applied to normal arterial wall tissue with intracatheter pressures as low as 200 kPa (2 atm). Strain images of a hard-soft rubber phantom, thrombus, and fibrotic plaque were produced using the integrated balloon ultrasound catheter. Results show that this catheter can apply large deformations at low pressures and image various vascular pathologies ex vivo. Potentially, it can serve as a multifunctional, intravascular therapeutic device to guide angioplasty and stent deployment.  相似文献   

3.
An integrated balloon ultrasound catheter prototype was designed to image from inside the balloon for real-time guidance during stent deployment. It was fabricated using a semicompliant balloon material (polyethylene) and a 20 MHz, 64-element circumferential ultrasound array. A commercial stent, nominally 4.4 mm in diameter and 12 mm in length, was used for a phantom study and placed along the length of the integrated balloon ultrasound catheter. A rubber phantom was created with an elastic modulus of 175 kPa with a 4.36 mm diameter lumen. Real-time balloon pressure measurements were recorded using a digital pressure sensor, and real-time radio-frequency (RF) data were captured as the balloon was inflated. The slope of the area-pressure ratio (APR) was compared to a reference measure of the balloon and stent expanded in water to determine a measure for optimal stent deployment. The results clearly indicate stent deployment at 11.1 atm using this metric. The APR slope could serve as quantitative feedback parameter for guiding stent deployment to reduce arterial injury and subsequent restenosis. After the stent deployment experiment, RF data were captured as the balloon catheter was moved along the length of the stent in pullback mode to confirm successful stent deployment. Ultimately, an integrated balloon ultrasound catheter could serve as a single catheter intervention device by providing real-time intravascular ultrasound (IVUS) imaging and quantitative feedback during stent deployment.  相似文献   

4.
Current imaging methods for catheter position monitoring during minimally invasive surgery do not provide an effective support to surgeons, often resulting in the choice of more invasive procedures. This study was conducted to demonstrate the feasibility of non-ionizing monitoring of endovascular devices through embedded quantitative ultrasound (QUS) methods, providing catheter self-localization with respect to selected anatomical structures. QUS-based algorithms for real-time automatic tracking of device position were developed and validated on in vitro and ex vivo phantoms. A trans-esophageal ultrasound probe was adapted to simulate an endovascular device equipped with an intravascular ultrasound probe. B-mode images were acquired and processed in real time by means of a new algorithm for accurate measurement of device position. After off-line verification, automatic position calculation was found to be correct in 96% and 94% of computed frames in the in vitro and ex vivo phantoms, respectively. The average errors of distance measurements (bias ± 2SD) in a 41-step 10-cm-long parabolic pathway were 0.76 ± 3.75 mm or 0.52 ± 3.20 mm, depending on algorithm implementations. Our results showed the effectiveness of QUS-based tracking algorithms for real-time automatic calculation and display of endovascular system position. The method, validated for the case of an endoclamp balloon catheter, can be easily extended to most endovascular surgical systems.  相似文献   

5.
It has been suggested that the combination of intravascular brachytherapy and coronary stent implantation may result in further reduction of restenosis after percutaneous balloon angioplasty. The use of an angioplasty balloon filled with a 188Re liquid beta source for intravascular brachytherapy provides the advantages of accurate source positioning and uniform dose distribution to the coronary vessel wall. The effect of source edge and stent on the dose distribution of the target tissue may be clinically important. In BANG gels, the absorbed radiation produces free-radical chain polymerisation of acrylic monomers that are initially dissolved in the gel. The number of polymer particles is proportional to the absorbed dose. In this study, 3D dose distributions are presented for 188Re balloons, with and without stents, using a prototype He-Ne laser CT scanner and the proprietary BANG polymer gel dosemeters.  相似文献   

6.
The paper deals with the modeling of balloon angioplasty by considering the balloon-induced overstretch of remnant non-diseased tissues in atherosclerotic arteries. A stenotic artery is modeled as a heterogenous structure composed of adventitia, media and a model plaque, and residual stresses are considered. The constitutive models are able to capture the anisotropic elastic tissue response in addition to the inelastic phenomena associated with tissue stretches beyond the physiological domain. The inelastic model describes the experimentally-observed changes of the wall during balloon inflation, i.e. non-recoverable deformation, and tissue weakening. The contact of the artery with a balloon catheter is simulated by a point-to-surface strategy. The states of deformations and stresses within the artery before, during and after balloon inflation are computed, compared and discussed. The 3D stress states at physiological loading conditions before and after balloon inflation differ significantly, and even compressive normal stresses may occur in the media after dilation.  相似文献   

7.
Intravascular ultrasound (IVUS) strain imaging of the luminal layer in coronary arteries, coined as IVUS palpography, utilizes conventional radio frequency (RF) signals acquired at 2 different levels of a compressional load. The signals are cross-correlated to obtain the microscopic tissue displacements, which can be directly translated into local strain of the vessel wall. However, (apparent) tissue motion and nonuniform deformation of the vessel wall, due to catheter wiggling, reduce signal correlation and result in invalid strain estimates. Implications of probe motion were studied on the tissue-mimicking phantom. The measured circumferential tissue displacement and level of the speckle decorrelation amounted to 12° and 0.58, respectively, for the catheter displacement of 456 μm. To compensate for the motion artifacts in IVUS palpography, a novel method based on the feature-based scale-space optical flow (OF), and classical block matching (BM) algorithm, were employed. The computed OF vector and BM displacement fields quantify the amount of local tissue misalignment in consecutive frames. Subsequently, the extracted circumferential displacements are used to realign the signals before strain computation. Motion compensation reduces the RF signal decorrelation and increases the number of valid strain estimates. The advantage of applying the motion correction in IVUS palpography was demonstrated in a midscale validation study on 14 in vivo pullbacks. Both methods substantially increase the number of valid strain estimates in the partial and compounded palpograms. Mean relative improvement in the number of valid strain estimates with motion compensation in comparison to one without motion compensation amounts to 28% and 14%, respectively. Implementation of motion compensation methods boosts the diagnostic value of IVUS palpography.  相似文献   

8.
针对冠脉支架植入术后引起的血管内再狭窄问题,开展了冠脉支架介入耦合系统力学行为的数值模拟研究。基于Ogden非线性弹性理论,构建了冠脉血管和动脉粥样硬化斑块的超弹性本构模型。通过非线性有限元法,建立了冠脉支架与狭窄血管的耦合作用模型,研究了冠脉支架在经历压握收缩、压握卸载、球囊扩张与球囊收缩等介入过程后的体内扩张性能,分析了冠脉支架的介入对狭窄血管损伤及再狭窄的力学影响因素。对比分析了S型支架和N型支架介入后狭窄冠脉血管的生物力学响应,数值计算结果表明:狭窄冠脉血管在支架支撑体波峰处存在较高的应力梯度,而且由于2种支架联接筋结构的类似性,血管内膜与斑块的应力分布规律一致。但是,N型支架的径向回弹率与轴向短缩率均小于S型支架,导致了更高的狭窄血管壁面峰值应力和应力梯度,更易于引起冠脉血管损伤造成血管内再狭窄。综上,该文提出的冠脉支架介入耦合系统力学模型,对于优化支架结构、抑制冠脉血管再狭窄问题,提供了重要的理论依据和临床参考。  相似文献   

9.
Experiments are carried out to examine the dilatation properties of metallic stents. Therefore a test rig has been developed. Also the dilatation behaviour of stents out of different materials are investigated. Additionally numerical simulations of dilatation are carried out. Because balloon expandable stent systems exist of the stent and a balloon catheter, the balloon catheter is examined before the investigation of the stent systems. The results show a reproducible and similar dilatation behaviour for all stents. Titanium as a material with an advanced biocompatibility shows advantages in the dilatation behaviour against the stainless steel stents. A qualitative equality between simulation and measurement of the dilatation behaviour can be noticed. The results indicate the possibility to numerically simulate and to optimise the dilatation behaviour by a combination of simulation and measurement. The preclinical measurement can be reduced to some prototypes.  相似文献   

10.
Flow‐limiting stenosis or total occlusion of coronary, cerebral, or peripheral arteries is very common. Minimally invasive treatment with balloon catheters optionally combined with stent implantation immediately relieves symptoms. However, renarrowing of dilated vessel segments due to excessive scar formation frequently reverses the initial success observed soon after treatment. Coating of balloons with antiproliferative drugs is a promising approach to overcome this problem. The coating of angioplasty balloon membranes is a challenging task. It must ensure homogeneous distribution of the antiproliferative agent and adherence to the balloon membrane during handling and on the way to the treatment site in a distant artery, where the agent should be immediately released and transferred to the vessel wall when the balloon is inflated. In vitro and in vivo testing methods are described. The impact of different kinds of balloons, drugs, additives, and coating methods has been investigated, and the results of representative examples including clinically tested products are presented and discussed.  相似文献   

11.
Restenosis is one of the main adverse effects of the treatment of atherosclerosis through balloon angioplasty or stenting. During the intervention, the arterial wall is overstretched, causing a cascade of cellular events and subsequent neointima formation. This mechanical stimulus and its mechanobiological effects can be reproduced in biomechanical simulations. The aim of these models is to predict the long-term outcome of these procedures, to help increase the understanding of restenosis formation and to allow for in silico optimization of the treatment. We propose a predictive finite-element model of restenosis, using the homogenized constrained mixture modelling framework designed to model growth and remodelling in soft tissues. We compare the results with clinical observations in human coronary arteries and experimental findings in non-human primate models. We also explore the model’s clinical relevance by testing its response to different balloon loads and to the use of drug-eluting balloons. The comparison of the results with experimental data shows the relevance of the model. We show its ability to predict both inward and outward remodelling as observed in vivo and we show the importance of an improved understanding of restenosis formation from a biomechanical point of view.  相似文献   

12.
We present a novel approach to perform high-sensitivity NMR imaging and spectroscopic analysis on microfluidic devices. The application of NMR, the most information-rich spectroscopic technique, to microfluidic devices remains a challenge because the inherently low sensitivity of NMR is aggravated by small fluid volumes leading to low NMR signal and geometric constraints resulting in poor efficiency for inductive detection. We address the latter by physically separating signal detection from encoding of information with remote detection. Thereby, we use a commercial imaging probe with sufficiently large diameter to encompass the entire device, enabling encoding of NMR information at any location on the chip. Because large-diameter coils are too insensitive for detection, we store the encoded information as longitudinal magnetization and flow it into the outlet capillary. There, we detect the signal with optimal sensitivity, using a solenoidal microcoil, and reconstruct the information encoded in the fluid. We present a generally applicable design for a detection-only microcoil probe that can be inserted into the bore of a commercial imaging probe. Using hyperpolarized 129Xe gas, we show that this probe enables sensitive reconstruction of NMR spectroscopic information encoded by the large imaging probe while keeping the flexibility of a large coil.  相似文献   

13.
This paper describes a detailed computational model of the interaction between an atomic force microscope probe tip and a sample surface. The model provides analyses of dynamic behaviors of the tip to estimate the probe deflections due to surface intermittent contact and the resulting dimensional biases and uncertainties. Probe tip and cantilever beam responses to intermittent contact between the probe tip and sample surface are computed using the finite element method. Intermittent contacts with a wall and a horizontal surface are computed and modeled, respectively. Using a 75 nm Critical Dimension (CD) tip as an example, the responses of the probe to interaction forces between the sample surface and the probe tip are shown in both time and frequency domains. In particular, interaction forces between the tip and both a vertical wall and a horizontal surface of a silicon sample are modeled using Lennard-Jones theory. The Snap-in and Snap-out of the probe tip in surface scanning are calculated and shown in the time domain. Based on the given tip-sample interaction force model, the calculation includes the compliance of the probe and dynamic forces generated by an excitation. Cantilever and probe tip deflections versus interaction forces in the time domain can be derived for both vertical contact with a plateau and horizontal contact with a side wall. Dynamic analysis using the finite element method and Lennard-Jones model provide a unique means to analyze the interaction of the probe and sample, including calculation of the deflection and the gap between the probe tip and the measured sample surface.  相似文献   

14.
Meemon P  Lee KS  Murali S  Rolland J 《Applied optics》2008,47(13):2452-2457
The optical system design of a dynamic focus endoscopic probe for optical coherence tomography is reported. The dynamic focus capability is based on a liquid lens technology that provides variable focus by changing its curvatures in response to an electric field variation. The effects of a cylindrical exit window present, in practice, for a catheter were accounted for. Degradation in image quality caused by this window was corrected to get diffraction limited imaging performance. As a result, the dynamically focusing catheter with a lateral resolution ranging from 4 to 6 mum through an approximately 5 mm imaging distance was designed without mechanically refocusing the system.  相似文献   

15.
We report a technique for conducting semi-infinite diffusion spectroelectrochemistry on an aqueous micro-drop as an easy and economic way of investigating spectroelectrochemical behavior of redox active compounds and correlating spectroscopic properties with thermodynamic potentials on a small scale. The chemical systems used to demonstrate the aqueous micro-drop technique were an absorbance based ionic probe [Fe(CN)(6)](3-/4-) and an emission based ionic probe [Re(dmpe)(3)](2+/+). These chemical systems in a micro-drop were evaluated using cyclic voltammetry and UV-visible absorbance and luminescence spectroscopies.  相似文献   

16.
Oesophageal cancer is the ninth leading cause of malignant cancer death and its prognosis remains poor, ranking as the sixth most frequent cause of death in the world. This research work aims to adopt an Auxetic (rotating-squares) geometry device, that had previously been examined theoretically and analysed by Grima and Evans (J Mater Sci Lett 19(17):1563–1565, 2000), to produce a novel Auxetic oesophageal stent and stent-grafts relevant to the palliative treatment of oesophageal cancer and also for the prevention of dysphagia. This paper discusses the manufacture of a small diameter Auxetic oesophageal stent and stent-graft. The oral deployment of such an Auxetic stent would be simplest if a commercial balloon dilatational catheter was used as this obviates the need for an expensive dedicated delivery system. A novel manufacturing route was employed in this research to develop both Auxetic films and Auxetic oesophageal stents, which ranged from conventional subtractive techniques to a new additive manufacturing method. Polyurethane was selected as a material for the fabrication of Auxetic films and Auxetic oesophageal stents because of its good biocompatibility and non-toxicological properties. The Auxetic films were later used for the fabrication of seamed Auxetic oesophageal stents. The flexible polyurethane tubular grafts were also attached to the inner luminal side of the seamless Auxetic oesophageal stents, in order to prevent tumour in-growth. Scanning electron microscopy was used to conduct surface morphology study by using different Auxetic specimens developed from different conventional and new additive manufacturing techniques. Tensile testing of the Auxetic films was performed to characterise their mechanical properties. The stent expansion tests of the Auxetic stents were done to analyse the longitudinal extension and radial expansion of the Auxetic stent at a range of radial pressures applied by the balloon catheter, and to also identify the pressure values where the Auxetic stent fails. Finite element models of both Auxetic film and Auxetic stent were developed, and the results were compared with experimental results with a good agreement. The tensile testing of the Auxetic polyurethane films revealed that the Poisson’s ratio of the sample ranged between ?0.87 and ?0.963 at different uniaxial tensile load values. From the stent expansion test, it was found that the Auxetic oesophageal stent radially expanded from 0.5 to 5.73 mm and longitudinally extended from 0.15 to 1.83 mm at a range of applied pressure increments (0.5–2.7 bar) from the balloon catheter.  相似文献   

17.
Motion compensation for intravascular ultrasound palpography   总被引:1,自引:0,他引:1  
Rupture of vulnerable plaques in coronary arteries is the major cause of acute coronary syndromes. Most vulnerable plaques consist of a thin fibrous cap covering an atheromous core. These plaques can be identified using intravascular ultrasound (IVUS) palpography, which measures radial strain by cross-correlating RF signals at different intraluminal pressures. Multiple strain images (i.e., partial palpograms) are averaged per heart cycle to produce a more robust compounded palpogram. However, catheter motion due to cardiac activity causes misalignment of the RF signals and thus of the partial palpograms, resulting in less valid strain estimates. To compensate for in-plane catheter rotation and translation, we devised four methods based on block matching. The global rotation block matching (GRBM) and contour mapping (CMAP) methods measure catheter rotation, and local block matching (LBM) and catheter rotation and translation (CRT) estimate displacements of local tissue regions. These methods were applied to nine in vivo pullback acquisitions, made with a 20 MHz phased-array transducer. We found that all these methods significantly increase the number of valid strain estimates in the partial and compounded palpograms (P < 0.008). The best method, LBM, attained an average increase of 17% and 15%, respectively. Implementation of this method should improve the information coming from IVUS palpography, leading to better vulnerable plaque detection.  相似文献   

18.
The design, fabrication, and characterization of a 112 channel, 5 MHz, two-dimensional (2-D) array transducer constructed on a six layer flexible polyimide interconnect circuit is described. The transducer was mounted in a 7 Fr (2.33 mm outside diameter) catheter for use in real-time intracardiac volumetric imaging. Two transducers were constructed: one with a single silver epoxy matching layer and the other without a matching layer. The center frequency and -6 dB fractional bandwidth of the transducer with a matching layer were 4.9 MHz and 31%, respectively. The 50 omega pitch-catch insertion loss was 80 dB, and the typical interelement crosstalk was -30 dB. The final element yield was greater than 97% for both transducers. The transducers were used to acquire real-time, 3-D images in an in vivo sheep model. We present in vivo images of cardiac anatomy obtained from within the coronary sinus, including the left and right atria, aorta, coronary arteries, and pulmonary veins. We also present images showing the manipulation of a separate electrophysiological catheter into the coronary sinus.  相似文献   

19.
Non-destructive testing (NDT) plays an important role in the safety and integrity of the large industrial structures such as pipelines in nuclear power plants (NPPs). The pulsed eddy current (PEC) is an electromagnetic NDT approach which is principally developed for the detection of surface and sub surface flaws. In this study a differential probe for the PEC system has been fabricated to detect the wall thinning in insulated steel pipelines. The differential probe contains an excitation coil with two hall-sensors. A stainless steel test sample was prepared with a thickness that varied from 1 mm to 5 mm and was laminated by plastic insulation with uniform thickness to represent the insulated pipelines in the NPPs. Excitation coil in the probe is driven by a rectangular current pulse, the resultant PEC response which is the difference of the two hall sensors is detected. The discriminating features of the detected pulse, peak value and the time to zero were used to describe the wall thinning in the tested sample. A signal processing technique such as power spectrum density (PSD) is devised to infer the PEC response. The results shows that the differential PEC probe has the potential to detect the wall thinning in an insulated pipeline of the nuclear power plants (NPPs).  相似文献   

20.
Our angled two-fiber probe design for in situ spectroscopic measurements (e.g., fluorescence, phosphorescence, or Raman) through a sapphire window has been modified to provide improved rejection of scattered excitation light while maintaining good efficiency of collection of the desired signal. The improvement is achieved by changing the probe axis to an off-normal configuration to minimize back reflection from window surfaces while maximizing the overlap of the light cones of the excitation and collection fibers at the outer window surface where the sample is in contact with the window. The results of laser-induced fluorescence measurements on phenol solution and sand samples, demonstrating the improved performance of the new probe, are reported. Up to 90-fold improvement in the fluorescence/scattered light ratio has been observed with the new probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号