首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although several designs have been advanced for coupling sample enrichment devices to a sheathless electrospray ionization-mass spectrometry (MS) interface on a capillary electrophoresis (CE) column, most of these approaches suffer from difficulties in fabrication, and the CE separation efficiency is degraded as a result of the presence of coupling sleeves. We have developed a design that offers significant improvements in terms of ease of fabrication, durability, and maintenance of the integrity of the CE-separated analyte zones. Capillaries with different inside and outside diameters were evaluated to optimize the performance of the CE-MS system, resulting in a mass limit of detection of 500 amol for tandem MS analysis of a standard peptide using a 20-microm-i.d. capillary. The improved design incorporates an efficient method to preconcentrate a sample directly within the CE capillary followed by its electrophoretic separation and detection using a true zero dead-volume sheathless CE-MS interface. Testing of this novel CE-MS system showed its ability to characterize proteomic samples such as protein digests, in-gel-digested proteins, and hydrophobic peptides as well as to quantitate ICAT-labeled peptides.  相似文献   

2.
The use of histidine as a protein digestion buffer followed by isoelectric trapping separations using "membrane separated wells for isoelectric focusing and trapping" (MSWIFT) and mass spectrometry (MS) analysis is described. Tryptic digestion of bovine serum albumin (BSA) performed in histidine buffered solutions yields similar amino acid sequence coverage values to those obtained using ammonium bicarbonate buffer. Time course studies suggest that histidine buffers provide faster migration of peptides from the loading compartment compared to digestions prepared in ammonium bicarbonate due to differences in conductivities of the two buffers. In addition, this sample preparation method and MSWIFT separations have been coupled with capillary electrophoresis (CE) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) as an alternative separation approach for proteomic studies. Tryptic peptides of ribosomal proteins in histidine are fractionated using MSWIFT followed by CE-MALDI-MS, which further illustrates the ability to couple fractions from a pI based separation device to CE-MS. Specifically, two-dimensional CE-MS plots provide a direct correlation between the numbers of basic residues within the peptide sequence displayed in charge-state trend lines. Combining MSWIFT and CE-MS provides added information regarding peptide sequence, specifically pI and in-solution charge state. Post-translational modifications can also be identified using this method.  相似文献   

3.
Garza S  Moini M 《Analytical chemistry》2006,78(20):7309-7316
Identification of proteins, in a complex protein mixture, using one-dimensional high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) analysis of its digest, usually suffers from low sequence coverage. There are several reasons for the low coverage including undersampling, wide concentration dynamic range of the proteins in a complex protein mixture, and wide range of electrospray ionization efficiency of peptides under each mobile-phase composition. To address this low sequence coverage, we introduce a novel technique, (CE-MS/MS)n, which utilizes the most significant advantages of CE-MS/MS, including economy of sample size, fast analysis time, and high separation efficiency, to increase the sequence coverage of a complex protein mixture. Based on these characteristics, (CE-MS/MS)n can be performed in which multiple CE-MS/MS subanalyses (injections followed by analyses) are analyzed and experimental variables are manipulated during each CE-MS/MS subanalysis in order to maximize sequence coverage. (CE-MS/MS)n is a practical technique since each CE-MS/MS subanalysis consumes <10 nL, and each CE-MS/MS subanalysis takes approximately 10 min; therefore, several subanalyses can be performed in approximately 1 h consuming only nanoliters of the sample. Two techniques have been introduced to address the undersampling: (1) (CE-MS/MS)n using dynamic exclusion. In this technique, several CE-MS/MS analyses (injection followed by separation) were performed in one run using the dynamic exclusion capability of the mass spectrometer until all peptide peaks were analyzed by MS/MS. (2) Gas-phase fractionation. In this technique, (CE-MS/MS)n is performed by scanning a narrow mass range (every approximately 100 m/z) during each CE-MS/MS subanalysis without using dynamic exclusion. Under this condition, in each subanalysis, the number of peptides available for MS/MS analysis is significantly reduced, and peptides with the same nominal masses are analyzed, thereby increasing sequence coverage. Additionally, to address the lack of detection of low-level peptides in a mixture containing a wide concentration dynamic range, the concentration of the sample was systematically increased in each subanalysis (while utilizing dynamic exclusion) so that low-intensity peptides would rise above the mass spectrometer threshold and, consequently, undergo MS/MS analysis. Moreover, to alter the ionization efficiency of peptides with low electrospray ionization efficiency, and to change the migration behavior of comigrating peptides under a specific liquid composition, the CE background electrolyte was modified in several subanalyses to further improve sequence coverage. The combination of the above-mentioned techniques was applied to the analysis of the tryptic digests of three well-characterized protein mixtures: a six-protein mixture with average MW of approximately 26,000 (standard I), a six-protein mixture with an average MW approximately 49,000 (standard II), and a more complex protein mixture containing 55 proteins (E. coli ribosomal proteins). In approximately 1 h, when the MS/MS of the peptides were manually checked, all peptides that produced peaks under electrospray ionization in the scanned range of the analysis (500-2000 m/z) and within the practical fragmentation capability of the MS (peptides with MW <3500) were identified for standard I by consuming only 200 fmol of each protein. When searched against a Swissprot database, the average sequence coverage for the standard I, II, and E. coli's ribosomal proteins were 57, 34, and 15%, respectively.  相似文献   

4.
Here we describe a mass spectrometry (MS) approach for biomarker discovery and structural characterization, based on both top-down and bottom-up analyses. Capillary electrophoresis (CE) coupled to electrospray ionization (ESI) time-of-flight (TOF) MS serves to separate and mass-measure the thousands of polypeptides contained in human urine. Statistical analysis of the differences between healthy control samples and patients with focal-segmental glomerulosclerosis, membranous glomerulonephritis, minimal change disease, IgA nephropathy, and diabetic nephropathy validates multiple biomarkers for the control and each of the diseases. To identify those biomarkers, we employ preparative CE, enabling direct infusion ESI MS analysis, followed by sample manipulation and reanalysis where necessary. We show how tandem Fourier transform ion cyclotron resonance (FT-ICR) MS identifies these sometimes large (>8 kDa) biomarkers. Critically, we maintain connectivity between the CE TOF MS data and the ICR data used for biomarker identification.  相似文献   

5.
X Jin  J Kim  S Parus  D M Lubman  R Zand 《Analytical chemistry》1999,71(16):3591-3597
The development of a system capable of the speed required for on-line capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) of tryptic digests is described. The ion trap storage/reflectron time-of-flight (IT/reTOF) mass spectrometer is used as a nonscanning detector for rapid CE separation, where the peptides are ionized on-line using electrospray ionization (ESI). The ESI produced ions are stored in the ion trap and dc pulse injected into the reTOF-MS at a rate sufficient to maintain the separation achieved by CE. Using methodology generated by software and hardware developed in our lab, we can produce SWIFT (Stored Waveform Inverse Fourier Transform) ion isolation and TICKLE activation/fragmentation voltage waveforms to generate MS/MS at a rate as high as 10 Hz so that the MS/MS spectra can be optimized on even a 1-2 s eluting peak. In CE separations performed on tryptic digests of dogfish myelin basic protein (MBP) where eluting peaks 4-8 s wide are observed, it is demonstrated that an acquisition rate of 4 Hz provides > 20 spectra/peak and is more than sufficient to provide optimized MS/MS spectra of each of the eluting peaks in the electropherogram. The detailed structural analysis of dogfish MBP including several posttranslational modifications using CE-MS and CE-MS/MS is demonstrated using this method with < 10 fmol of material consumed.  相似文献   

6.
Electrokinetic supercharging (EKS) is a powerful and practical method for multifold in-line concentration of various analytes prior to capillary electrophoresis (CE) analysis. However, a problem of insufficient sensitivity has always existed when trace analyte quantification by EKS-CE is a target, especially when coupled with conventional detectors. Normally this requires a greatly increased amount of analyte injected without separation degradation. In this contribution, we have shown that it is possible to substantially improve analyte loading and hence CE method detectability by modifying sample introduction configuration. The volume of sample vial was increased (from typical 500 μL to 17 mL), the common wire electrode was replaced by a ring electrode, and the sample solution was stirred. With these alterations, more analyte ions are accumulated within the effective electric field during electrokinetic injection and then maintained as focused zones due to transient isotachophoresis. The versatility of the customized EKS-CE approach for sample concentration was demonstrated for a mixture of seven rare-earth metal ions with an enrichment factor of 500?000 giving detection limits at or below 1 ng/L. These detection limits are over 100?000 times better than can be achieved by normal hydrodynamic injection, 1000 times better than the sensitivity thresholds of inductively coupled plasma atomic emission spectrometry (ICP-AES), and even close to those of inductively coupled plasma mass spectrometry (ICPMS).  相似文献   

7.
When coupling capillary electrophoresis with postcolumn detection methods, such as mass spectrometry, the presence of postcolumn band broadening must be considered. The band broadening effects introduced by junction-at-the-tip CE-MS interfaces using a postcolumn micro flow-through vial are investigated by studying the hydrodynamic flow patterns and mass transport process inside the micro vial at the end of the CE separation capillary. Simulation results obtained by solving the Navier-Stokes and mass balance equations provide insights into the velocity field and concentration distribution of the analytes in the micro vial and demonstrate that, with a low flow rate of chemical modifier solution, the laminar flow streams confine the analyte molecules to the central part of the micro vial and thus maintain major features of the peak shapes. Peaks detected by UV and MS under similar experimental conditions were compared to verify the numerical prediction that the main features of the UV peak can be retained in the MS peak. Experiments also show that band broadening can be minimized when an appropriate chemical modifier flow rate is selected.  相似文献   

8.
Details of interfacing a high-pressure gas chromatograph to the internal ion source of a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) are described. We present our preliminary results and potential analytical applications of GC/FT-ICR for analyzing complex biological and environmental sample matrixes, such as petroleum mixtures. Based on GC/FT-ICR data, rapid characterization of various automobile gasoline samples is possible. Comparison between acquired data from the GC/FT-ICR MS (in broadband mode) and a commercial GC quadrupole mass spectrometer (QMS) (over a wide mass range) indicates that sensitivity of the GC/FT-ICR MS is an order of magnitude lower. High mass resolution and mass measurement accuracy of FT-ICR MS can be utilized for unambiguous molecular formula identification of unknown analytes.  相似文献   

9.
Mixtures of inorganic ions separated by capillary electrophoresis (CE) and ion exchange chromatography (IC) are detected by mass spectrometry (MS) using an ion spray atmospheric pressure ionization source. The selectable degree of ion-adduct declustering and molecular fragmentation in the MS interface region allows the system to be operated as an elemental analyzer or as a molecular detector suitable for oxidation state determinations. Both inorganic anions and cations (including alkalis, alkaline earths, transition metals, and lanthanides) are analyzed by CE-MS. A variety of CE separation buffers are evaluated for the cation analyses (e.g., creatinine, ammonium acetate, and tris[hydroxymethyl]aminomethane). Only one of the buffers (i.e., creatinine) can be used for CE-indirect UV detection. A CE capillary permanently coated with strong anion exchange sites and a pyromellitic acid buffer (suitable for indirect UV detection) is used for the inorganic anion separations. The coated column eliminates the need for buffer modifiers to reverse the flow in the capillary, which then reduces background noise and mass spectral complexity. The separation and detection of 13 inorganic anions are also accomplished by IC using an anion exchange column with a carbonate-bicarbonate mobile phase, on-line suppressed conductivity detection, and mass spectrometric detection.  相似文献   

10.
A simple, low-cost capillary electrophoresis-mass spectrometry (CE-MS) method is demonstrated for the simultaneous analysis of amino acids and small carboxylic acids (glycerate, lactate, fumarate, succinate, malate, tartrate, citrate, iso-citrate, cis-aconitate, and shikimate). All CE-MS experiments were performed using a single uncoated fused-silica capillary and with a single separation electrolyte, formic acid. For CE polarity, the CE inlet was set as the anode, and the MS side was set as the cathode. By using high-speed sheath gas flow, the apparent mobilities of all compounds were sped up; thus, the migration times of the carboxylic acids were reduced. In positive ion mode ESI-MS detection, small carboxylic acids were detected faintly as m/z = [M + 18](+) or [M + 23](+), after protonated molecule detection (m/z = [M + 1](+)) of the amino acids. In negative ion mode, all of these small carboxylic acids were detected clearly as deprotonated molecules (m/z = [M - 1](-)), after detection of the amino acids. By changing the polarity of the MS during CE separation, both amino acids and small carboxylic acids were detectable in a single electrophoresis analysis run. With this method, the diurnal metabolic changes of pineapple leaves were observed as reflecting Crassulacean acid metabolism.  相似文献   

11.
Capillary electrophoresis (CE) has been combined with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and radionuclide detection to assay mass-limited biological samples. Nanovial sampling techniques enable injections into the CE capillary from 50 to 150-nL volume samples; after the separation, nanoliter fraction collection combines the CE effluent with a MALDI matrix and minimizes sample spreading, thus allowing both MALDI MS and radionuclide detection on the CE fractions. MALDI MS complements the elution time information of CE by providing accurate molecular mass data, and radionuclide detection provides zeptomole limits of detection with quantitative information. While MALDI MS detects all fully processed peptides at sufficient concentration, culturing the neuron in media containing 35S-Met provides selective radionuclide detection of newly synthesized methionine-containing peptides. The analysis and detection of the expected neuropeptides and hormones in a single 40-microm bag cell neuron from Aplysia californica with CE/MALDI MS/radionuclide detection demonstrates the ability of this hyphenated approach to work with chemically complex mass-limited samples.  相似文献   

12.
A chip-based capillary electrophoresis/mass spectrometry (CE/MS) system is described for the CE separation and on-line electrospray detection of carnitine and selected acylcarnitines from mixtures of analytical standards as well as extracts of fortified human urine. Chip-based CE/MS experiments in two different laboratories were carried out using a triple-quadrupole mass spectrometer and a quadrupole time-of-flight (QTOF) mass spectrometer, respectively. The glass chips used with both systems were comparably equipped with a microfabricated capillary electrophoresis (CE) channel but with different electrosprayers. The quadrupole chip-based CE/MS experiments employed a miniature coupled microsprayer, which allowed coupling of the microelectrospray process via a micro liquid junction at the exit of the CE capillary channel. Selected ion monitoring (SIM) CE/MS experiments were employed for all of the quadrupole CE/MS work. The QTOF CE/MS full-scan single MS and MS/MS experiments were carried out in another laboratory using accurate mass measurement TOF mass spectrometry techniques. The electrospray process that was employed with the QTOF system differed in that an inserted nanoelectrospray capillary needle was carefully affixed into a flat-bottomed hole that was aligned with the CE channel exit orifice. SIM CE/MS using the described quadrupole system provided acceptable ion current electropherograms from fmole levels from analytical standard solutions of carnitine and acylcarnitines that were manually injected (loaded) onto the chip. In addition, the corresponding electropherograms for human urine fortified with the target carnitine and acylcarnitines at a 10-20 microg/mL (35-124 microM) level were obtained via SIM CE/MS techniques. The measured CE separation efficiency for the SIM CE/MS electropherograms was determined to be 2860 plates (peak width at half-height method or N = 5.54(T/WO.5(2)), and carnitine and three acylcarnitines were separated in less than 48 s. In contrast, using quadrupole-TOF technologies, the same samples could be diluted by a factor of 2-4 to obtain a comparable detector response for the target compounds. In the full-scan, single mass analyzer mode (m/z 150-500), the CE separation efficiency was measured to be 2600 plates, but mass measurement accuracy was less than 5.0 ppm for the quaternary cations. In the CE/MS/MS mode, full-scan collision-induced dissociation (CID) mass spectra were obtained with a mass accuracy of < or =10 ppm for the higher mass ions and < or =27 ppm for the lower mass product ions. These results demonstrate the feasibility for on-chip CE separation and electrospray mass spectrometric detection for these important compounds in synthetic mixtures, as well as in human urine extracts.  相似文献   

13.
The goal of characterization of the proteome, while challenging in itself, is further complicated by the microheterogeneity introduced by posttranslational modifications such as glycosylation. A combination of liquid chromatography (LC), capillary electrophoresis (CE), and mass spectrometry (MS) offers the advantages of unique selectivity and high efficiency of the separation methods combined with the mass specificity and sensitivity of MS. In the current work, the combination of liquid-phase separations and mass spectrometry is demonstrated through the on-line coupling of electrospray ionization mass spectrometry (ESI-MS) and off-line coupling with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF-MS). LC/ESI-MS yields real-time results while maintaining the separation obtained from the LC analysis. CE/MALDI TOF-MS offers high-mass detection and extremely low detection limits. The unique separation selectivity of CE relative to reversed-phase HPLC separations of the members of a glycopeptide family was used to develop an integrated multidimensional analysis achieved by the off-line coupling of LC, CE, and MALDI TOF-MS. To demonstrate the applicability of these techniques to the characterization of the heterogeneity of posttranslational modifications present in glycoproteins, we will report on the study of the glycoforms present in a N-linked site in a single-chain plasminogen activator (DSPAα1).  相似文献   

14.
A method based on solid-phase microextraction (SPME) and capillary electrophoresis/mass spectrometry (CE/ MS) is described for determining simultaneously five acidic pesticides (o-phenylphenol, ioxynil, haloxyfop, acifluorfen, picloram) in fruits. The CE device is coupled to an electrospray interface by a commercial sheath-flow adapter. Emphasis is placed on fulfillment of the speed and sensitivity requirements. The best separation is achieved using 32 mM ammonium formate/acid formic buffer at pH 3.1, with a working voltage of 25 kV. The MS detection of the five pesticides was performed in negative ionization mode. Full-scan spectra with base peaks corresponding to [M-H]- were obtained except for acifluorfen, which gives [M-H-CO2]- as most abundant ion. Compared with the conventional EC-UV, the limits of detection were lower for acifluorfen, haloxyfop, ioxynil, and picloram, by a factor of 20, 20, 50, and 2, respectively. Extraction involved fruit sample homogenization with an acetone-water solution (5:1), filtration, and acetone evaporation prior to fiber extraction. SPME conditions such as time, pH, ion strength, stationary phase of the fiber, sample matrix, and desorption solvents were examined. The recovery of the analytes ranged from 7 to 94%, and the relative standard deviation was between 3 and, 13%. The method was found to be linear between 0.02 and 500 mg kg(-1) with correlation coefficients ranging from 0.992 to 0.997. The limits of quantification were from 0.02 to 5 mg kg(-1). The optimized method was successfully applied to the analysis of acid pesticides in fruit samples.  相似文献   

15.
Chang SY  Yeung ES 《Analytical chemistry》1997,69(13):2251-2257
Mass spectrometry (MS) is usually coupled on-line with capillary electrophoresis (CE) to analyze biomolecules by using electrospray ionization or continuous-flow fast-atom bombardment. We present a new design for laser vaporization/ionization time-of-flight mass spectrometry. CE, with its low flow rate (<1 μL/min), is highly compatible with MS, even if the total column effluent is introduced directly. A UV laser is used to vaporize and ionize the solution eluting from the column. There is no need to have a makeup solvent. Using this system, we have analyzed a group of amines and peptides. The concentration detection limit of serotonin is in the 10(-)(7) M level. The separation and identification of an amine mixture by CE/MS demonstrates the complementary nature of the information.  相似文献   

16.
A chip-based capillary electrophoresis/mass spectrometry (CE/MS) system is described for the on-chip separation and coupled electrospray detection of selected small drug molecule compounds. These studies include the quantitative determination of carnitine and acetylcarnitine in analytical standard solutions as well as imipramine and desipramine in fortified human plasma samples. A clinical human plasma sample was also analyzed following the normal administration of desipramine to a volunteer, and the parent drug was determined using the described chipbased CE/MS technique. In each instance, stable isotope-incorporated internal standards were used. The chip-based CE system was microfabricated from glass and coupled to a micro ion spray device constructed in-house. The atmospheric pressure ionization system employed in this work was a PE Sciex API III tandem triple quadrupole system operated in the selected ion monitoring (SIM) mode. The results from the work reported here demonstrate the feasibility for carrying out rapid (30 s) chipbased quantitative CE/MS determinations of samples containing small-molecule compounds. Using SIM CE/ MS techniques, the described API III quadrupole system provided acceptable ion current electropherograms from subpicomole levels of the targeted compounds loaded onto the chip. The corresponding electropherograms for the standard solution of carnitines at the 1-500 microg/mL level were obtained via SIM CE/MS techniques (R2 > 0.99). In addition, analyses of fortified samples of imipramine desipramine were measured relative to their corresponding d3 internal standards to obtain calibration curves ranging from 5 to 500 microg/mL in human plasma (R2 > 0.99). The intra-assay precision ranged from 4.1 to 7.3% RSD. The intra-assay accuracy ranged from 94.0 to 104%. These results demonstrate the feasibility for on-chip CE separation and electrospray mass spectrometric determination in applications for bioanalytical measurements for these important compounds in synthetic mixtures and human plasma extracts.  相似文献   

17.
Moini M 《Analytical chemistry》2001,73(14):3497-3501
A split-flow capillary electrophoresis electrospray ionization mass spectrometry (CE/ESI-MS) interface is introduced, in which the electrical connection to the CE capillary outlet is achieved by diverting part of the CE buffer out of the capillary through an opening near the capillary outlet. The CE buffer exiting the opening contacts a sheath metal tube which acts as the CE outlet/ESI shared electrode. In cases in which the ESI source uses a metal needle, the voltage contact to the CE buffer is achieved by simply inserting the outlet of the CE capillary, which contains an opening, into the existing ESI needle (thereby greatly simplifying the CE to MS interfacing). As a result of the concentration-sensitive nature of ESI, splitting a small percentage of the CE flow has minimal effect on the sensitivity of detection. In addition, because the liquid is flowing through the opening and out of the capillary, there is no dead volume associated with this interface. Moreover, bubble formation due to redox reactions of water at the electrode does not effect CE/ESI-MS performance, because the actual metal/liquid contact occurs outside of the CE capillary. The sensitivity associated with a sheathless CE/MS interface, the ease of fabrication, universality, and lack of any dead volume make this design a superior CE/ESI-MS interface. The performance of this interface is demonstrated by analyses of a peptide standard and a protein digest using a variety of capillary dimensions.  相似文献   

18.
An automatic unit for the screening of rainwater is used for the determination of organolead compounds using different detectors coupled to a gas chromatograph. A systematic overview is given of the advantages and disadvantages of several detectors (electron ionization mass spectrometry, EI-MS; microwave induced plasma atomic emission spectrometry, MIP-AES; and inductively coupled plasma time-of-flight mass spectrometry, ICP-TOFMS, for the speciation of organolead compounds on the basis of sensitivity, selectivity and reliability. C60 fullerene and RP-C18 were used as sorbent materials for these compounds. The primary assets of the fullerene sorbent, as compared to C18 sorbent, are high sensitivity and selectivity resulting from efficient adsorption due to large surface area and interstitial volume. Among the detection systems, GC/ ICP-TOFMS is the most sensitive, with absolute detection limits of approximately 15 fg of organolead compounds (as lead) using 5-mL sample volumes. Except for diethyllead, similar sensitivities were obtained by MIP-AES. GC/MS is intrinsically the most specific option, because the species are detected directly from molecular information. The precision is similar for all detectors. The screening of rainwater from different locations showed that samples collected in countries in which leaded gasolines are now banned contain organolead species at concentrations below 2 pg/ mL, levels that can be detected only for sample volumes of 25 mL and using MIP-AES or ICP-TOFMS as detectors, their determination being impossible by GC/MS.  相似文献   

19.
Wang J  Ma M  Chen R  Li L 《Analytical chemistry》2008,80(16):6168-6177
An off-line interface incorporating sheathless flow and counter-flow balance is developed to couple capillary electrophoresis (CE) to matrix-assisted laser desorption ionization Fourier transform mass spectrometry (MALDI FTMS) for neuropeptide analysis of complex tissue samples. The new interface provides excellent performance due to the integration of three aspects: (1) A porous polymer joint constructed near the capillary outlet for the electrical circuit completion has simplified the CE interface by eliminating a coaxial sheath liquid and enables independent optimization of separation and deposition. (2) The electroosmotic flow at reversed polarity (negative) mode CE is balanced and reversed by a pressure-initiated capillary siphoning (PICS) phenomenon, which offers improved CE resolution and simultaneously generates a low flow (<100 nL/min) for fraction collection. (3) The predeposited nanoliter volume 2,5-dihydroxybenzoic acid (DHB) spots on a Parafilm-coated MALDI sample plate offers an improved substrate for effective effluent enrichment. Compared with direct MALDI MS analysis, CE separation followed by MALDI MS detection consumes nearly 10-fold less sample (50 nL) while exhibiting 5-10-fold enhancement in S/N ratio that yields the limit of detection down to 1.5 nM, or 75 attomoles. This improvement in sensitivity allows 230 peaks detected in crude extracts from only a few pooled neuronal tissues and increases the number of identified peptides from 19 to 43 (Cancer borealis pericardial organs (n = 4)) in a single analysis. In addition, via the characteristic migration behaviors in CE, some specific structural and chemical information of the neuropeptides such as post-translational modifications and family variations has been visualized, making the off-line CE-MALDI MS a promising strategy for enhanced neuropeptidomic profiling.  相似文献   

20.
Y Zhao  C E Lunte 《Analytical chemistry》1999,71(18):3985-3991
Two limitations of capillary electrophoresis (CE) are the low sample loadability of the capillary and an incompatibility with high ionic strength samples. Several strategies have been described to preconcentrate and lower the ionic strength of physiological samples prior to CE analysis. These have included both off-capillary and on-capillary approaches. We have previously described a version of on-column field-amplification stacking termed pH-mediated stacking. pH-mediated stacking was initially developed for the separation of cations. In this report, we describe the application of pH-mediated sample stacking to anions. In this method, an electrokinetic injection is used to introduce analyte anions into the CE system and simultaneously replace the sample matrix cations with ammonia from the background electrolyte. Base is then electrokinetically injected to neutralize the sample zone and create a low conductivity region across which the analyte anions will stack. Using this method, a sensitivity enhancement of more than 66-fold was achieved without loss in separation efficiency relative to normal electrokinetic injection. Detection limits of 0.3 microM for four phenolic acids in a physiological sample were achieved using simple UV absorbance detection. The limit to the amount of sample that could be loaded using this technique was the length of the separation capillary. To further increase the amount of sample that could be loaded, a double-capillary system was developed. Using the double-capillary system the sensitivity was increased more than 300-fold and detection limits of 0.06 microM were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号