首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
缓释微球乙型肝炎疫苗的初步研究   总被引:3,自引:0,他引:3  
目的 研制缓释微球乙型肝炎疫苗。方法 用聚-DL-乳酸-聚乙二醇共聚物(PELA)为材料,包裹乙 型肝炎表面抗原(HBsAg),制成缓释微球疫苗。微球的粒径均小于5um,平均粒径为2.17um,抗原包裹量为1.25%, 包裹率为60-80%。用 SDS-PAGE检测抗原,以微球疫苗免疫 BALB/c。小鼠。结果 HBsAg的结构包裹前后是一致 的,小鼠经皮下注射单剂微球疫苗后,在第 14w,小鼠血清 IgG滴度可达到铝佐剂疫苗相当的水平,且维持较高的滴 度。结论采用生物可降解的缓释微球作为乙肝疫苗载体系统具有潜在的优势。  相似文献   

2.
目的 探索用一种新型的甲型肝炎减毒活疫苗及其免疫途径。方法 用可生物降解的材料聚乳 酸/乙醇酸(PLA/PLG)包裹甲型肝炎减毒活疫苗,制成微球型疫苗,检测微球的大小及在体外病毒释放的状况,和口 服免疫恒河猴后病毒在体内繁殖及免疫应答状况。结果 微球大小在6~10μm范围,体外病毒抗原释放长达27d 左右,体外抗原释放高峰在3~7d,口服免疫恒河猴后,约1w左右开始排毒,以后一直呈间断排毒。抗体应答于第 3w出现,高峰期在5~6w,达1261MmIU/ml,随后逐渐下降,口服加强免疫后,抗体回升,野毒株攻击后,抗体再度回升 达1244mIU/ml。结论 微球型甲型肝炎减毒活疫苗口服免疫恒河猴后,能引起一定水平的免疫应答。  相似文献   

3.
以α-溴代丙酸乙酯为引发剂引发MMA和TEMPO自由基发生ATRP活性共聚合,,制得带数个TEMPO基团的PMMA预聚物,它能直接引发苯乙烯发生氮氧自由基下的ATRP,制得侧链相对分子质量可控的多支化PMMA-g-PS。由于氮氧自由基容易夺得PMMA-g-PS。由于氮氧自由基容易夺得PMMA预聚物中EPNBr链端中的ω碳氢,导致引发效率下降,最终的PMMA-g-PS。由于共聚物相对分子质量分布趋宽  相似文献   

4.
张雁  李忠明 《中国塑料》1999,13(4):69-73
介绍了二烯基双酚A醚(DBAE)与低密度聚乙烯(LDPE)在Haake转矩流变仪的混炼器中进行熔融接枝反应,采用红外光谱(FT-IR)分析证实了接枝共聚物(LDPE-g-DBAE)并通过对LDPE-g-DBAE的接枝率(GR)和熔体流动速率(MFR)测试,考察了制备条件(反应温度,引发剂用量和DBAE用量)对接枝反应及产物的影响,LDPE-g-DBAE的最终目的是作为高密度聚乙烯/聚碳酸酯共混体系  相似文献   

5.
LDPE/炭黑导电复合材料电学及力学性能研究   总被引:6,自引:1,他引:5  
赵石林  李青 《塑料工业》1998,26(6):25-27
研究了炭黑种类及用量、极性共聚物(E-AE-MAH)、润滑剂种类及用量和交联剂(DCP)对LDPE/炭黑导电复合材料电学及力学性能的影响。结果表明,HG-4型炭黑导电性最好,ACET炭黑导电性较差。极性共聚物能提高复合材料的导电性和力学性能。高分子蜡改善复合材料电学及力学性能的效果优于液体石蜡。交联剂使复合材料导电性变差,但力学性能提高  相似文献   

6.
将催化剂FeCl2/亚氨基二乙酸用于原子转移自由基聚合制备PS-b-PMMA嵌段共聚物。大分子嵌共聚物的相对分子质量及其分布用GPD测定,共聚物的结构用红外光谱表征,玻璃化转变温度用DSC测定。  相似文献   

7.
LARGESCALEPURIFICATIONOFPHOSPHOGLYCERATEKINASE(PGK)ANDGLYCERALDEHYDE3-PHOSPHATEDEHYDROGENASE(GAPDH)FROMYELLOWPEASBYPEG/REPPAL...  相似文献   

8.
本文研究了尼龙-66(PA-66)与聚乙烯(LDPE)共混物的力学性能。结果表明,用马来酸酐接枝聚乙烯和三元乙丙橡胶(EPDM)改善了与基体PA-66的相容性。添加弹性体EPDM,使之生成(PE/EPDM)-g-MAH共聚物,可以大幅度度地提高PA-66/(PE/EPDM)-g-MAH冲击强度,同时熔体粘度随温度的变化趋于平缓,吸水率有所下降。  相似文献   

9.
LDPE/SBS-g-MAN增韧PA-6和增容PA-6/LDPE的研究   总被引:2,自引:0,他引:2  
对MAH接枝LDPE/SBS制备复合相容剂LDPE/SBS g MAN及其对PA 6的增韧作用和对PA 6/LDPE的增容作用进行研究,并对菜混物的力学性能、微观形态结构进行了分析  相似文献   

10.
磨盘形力化学反应器中LDPE固相力化学接枝MAH的研究   总被引:2,自引:0,他引:2  
研究了磨盘碾磨中HDPE、LDPE、LLDPE和mPE的粉碎和降解以及LDPE的固相力化学接枝。将LDPE与马来酸酐共碾磨,制备了低密度聚乙烯-马来酸酐共聚物(LDPE-g-MAH)。采用IR、DSC和化学滴定等方法对所制备的LDPE-g-MAH进行了分析表征。系统研究了磨盘转速、碾磨次数、低密度聚乙烯与马来酸酐配比等因素对产物接枝率的影响。结果表明,通过磨盘碾磨的力化学反应,MAH在LDPE上的  相似文献   

11.
Poly(lactic acid–4‐hydroxyproline–polyethylene glycol) (PLA–Hpr–PEG) was synthesized via melt copolymerization with stannous chloride as a catalyst activated by a proton acid. Copolymers with different poly(ethylene glycol) (PEG) concentrations (0.1, 0.5, 1, and 5 wt %) were synthesized and exhibited moderate molecular weights (weight‐average molecular weight = 9705–13,600 g/mol) and reasonable molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.35– 1.66). The structure of the polymers was verified with infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. The nanoparticles were made by the nanoprecipitation method with PLA–Hpr–PEG. The size and size distribution of the nanoparticles were investigated with laser light scattering, and the surface morphology of the nanoparticles was investigated with transmission electron microscopy. The drug encapsulation efficiency and drug loading content were measured with ultraviolet absorption spectroscopy. The effects of various formulation parameters were evaluated. The prepared nanoparticles were spherical and greater than 100 nm in size. The drug loading content and encapsulation efficiency were greatly influenced by the amount of the copolymer and the volume of the solvent. The PEG content in the polymer could affect the release of drugs from the PLA–Hpr–PEG nanoparticles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2654–2659, 2007  相似文献   

12.
Poly‐DL ‐lactide (PLA) and poly‐DL ‐lactide‐poly(ethylene glycol) (PELA) were produced by bulk ring‐opening polymerization using stannous chloride as initiator. PLA, PELA microspheres, and PELA microspheres containing the outer membrane protein (OMP) of Leptospira interrogans with the size of 1.5–2 μm were prepared by a solvent evaporation process. In vitro degradation and release tests of PLA, PELA, and OMP‐loaded PELA microspheres were performed in pH 7.4 buffer solution at 37°C. Quantitatively, the degree of degradation was monitored by detecting the molecular weight reduction, by evaluating the mass loss and the apparent degradation rate constant, and by determining the intrinsic viscosity and poly(ethylene glycol) content of retrieved polymer, while the release profile was assessed by measuring the amount of protein presented in the release medium at various intervals. Qualitatively, the morphological changes of microspheres were observed with scanning electron micrography. The observed relative rates of mass loss versus molecular weight reduction are consistent with a bulk erosion process rather than surface erosion for PELA microspheres. The introduction of hydrophilic poly(ethylene glycol) domains in copolymer PELA and the presence of OMP within microspheres show critical influences on the degradation profile. The OMP‐loaded PELA microspheres present triphasic release profile and a close correlation is observed between the polymer degradation and the OMP release profiles. It is suggested that the polymer degradation rate, protein diffusion coefficient, and the water‐swollen structure of microspheres matrix commonly contribute to the OMP release from PELA microspheres. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 140–148, 2000  相似文献   

13.
Polylactide (PLA) and a block copolymer, poly‐DL ‐lactide–poly(ethylene glycol) (PELA) were synthesized by bulk ring‐opening polymerization initiated by stannous chloride. A linear DNA molecule, λDNA, was used as the model DNA. PLA, PELA, λDNA‐loaded PLA and PELA microspheres were prepared by the solvent‐extraction method based on the formation of multiple w1/o/w2 emulsion. The particle‐size distribution, surface morphology, and DNA loading characterized the microspheres. The mean diameter of λDNA‐loaded PELA microspheres was proved to be 3.5 μm. The integrity of the λDNA molecules, after preparing the microspheres, was determined by agarose gel electrophoresis. The result suggested that most of the λDNA molecules could retain their integrity after being encapsulated by PELA. The PELA microspheres could also prevent λDNA from being degraded by DNase. The in vitro degradation and release of PLA, PELA, and λDNA‐loaded PELA microspheres were carried out in a pH 7.4 buffer solution at 37°C. Quantitatively, evaluating the molecular weight reduction, the mass loss, the particle‐size changes, and the particle‐size distribution changes also monitored the degree of degradation. The release profile was assessed by measurement of the amount of λDNA present in the release medium at determined intervals. The degradation profiles of the PELA microspheres were quite different from those of the PLA microspheres. The introduction of the hydrophilic poly(ethylene glycol) domain in PLA and the presence of λDNA within the microspheres exhibit the apparent influence on the degradation and release profiles. A biphasic release profile was proved, that is, an initial burst release during the first days, then a gradual release. It was demonstrated that the PELA microspheres could be used potentially as a controlled release‐delivery system for λDNA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2557–2566, 2002  相似文献   

14.
Adriamycin (ADR) was selected as a model drug to evaluate the potential applications of polylactide/poly(ethylene glycol)/polylactide (PLA/PEG/PLA) micelles as drug carriers in parenteral delivery systems. The PLA/PEG/PLA triblock copolymer micelles were characterized by dynamic light scattering and transmission electron microscopy. It was found that the micelle size increased with the increasing of the PLA chain length. The average size of ADR‐loaded micelles was 143.2 nm. The histogram analysis showed that the ADR‐loaded micelles possessed a narrow unimodal size distribution. The ADR loading contents of the micelles and ADR entrapment efficiency were dependent on the PLA chain length and PEG chain length in the copolymer. They increased with the increase of the PLA chain length, but the PEG chain length was identical and decreased with the increase of the PEG chain length; the length of the PLA block was similar. The initial amount of ADR also influenced the drug contents and entrapment efficiency (i.e., the more the initial amount added, the more the drug contents and the higher encapsulation efficiency). The drug release experiments indicated that the ADR‐loaded micelles possessed sustained release characteristics. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1976–1982, 2001  相似文献   

15.
Poly(lactic acid) PLA was plasticized with low molecular weight poly(ethylene glycol) PEG‐200 to improve the ductility of PLA, while maintaining the plasticizer content at maximum 10 wt%. Low molecular weight of PEG enables increased miscibility with PLA and more efficient reduction of glass transition temperature (Tg). This effect is enhanced not only by the low molecular weight but also by its higher content. The tensile properties demonstrated that the addition of PEG‐200 to PLA led to an increase of elongation at break (>7000%), but a decrease of both tensile strength and tensile modulus. The plasticization of the PLA with PEG‐200 effectively lowers Tg as well as cold‐crystallization temperature, increasing with plasticizer content. SEM micrographs reveal plastic deformation and few long threads of a deformed material are discernible on the fracture surface. The use of low molecular weight PEG‐200 reduces the intermolecular force and increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4576–4580, 2013  相似文献   

16.
采用在双螺杆中熔融共混,以不同相对分子质量聚乙二醇(PEG)作为增塑剂,对聚乳酸(PLA)进行增塑改性,并把改性后的PLA进行熔融纺丝。用扫描电子显微镜(SEM)、熔体流动速率仪(MFR)、单纤维电子强力仪(EYST)和差示扫描量热仪(DSC)对改性PLA纤维进行表征。讨论了不同相对分子质量的PEG对PLA纤维性能的影响,发现随着PEG含量的增加,改性PLA的流动性增加。当PEG质量分数≤8%时,随着PEG含量的增加,改性PLA纤维强度增加,断裂伸长率增加,玻璃化转变温度(Tg)和熔点(Tm)下降。PLA与PEG组分间表现出较好的相容性。PEG200改性的PLA纤维综合效果最好。  相似文献   

17.
This article explores the application of spray drying technique to produce microparticles of poly(D ,L ‐lactide‐co‐glycolic acid) (PLGA), as well as di‐block copolymer of polylactic acid (PLA) and polyethylene glycol (PEG) (PLA‐PEG), containing zidovudine (AZT), an anti‐HIV drug, to achieve its controlled release over an extended period of time. Of the two polymers studied, PLGA is hydrophobic, whereas PLA‐PEG is hydrophilic and the drug, AZT is water‐soluble. Formulations were developed containing 10 and 25 wt % of AZT giving encapsulation efficiencies (EE) of 66 to 86% for PLGA and 90 to 94% for PLA‐PEG di‐block copolymer. All the formulations were characterized by Fourier transform spectroscopy (FTIR) to investigate the interaction of AZT with polymers and to characterize PLA‐PEG. NMR was also employed to confirm the formation of PLA‐PEG. X‐ray diffraction was used to understand the molecular level dispersion of AZT within the polymeric matrices, while differential scanning calorimetry was employed to assess thermal properties. Scanning electron microscopy was employed to understand the surface morphology of AZT‐loaded microparticles. In vitro release experiments performed in pH 7.4 buffer media extended the release of AZT up to 125 h with PLGA, whereas 30 h were required for releasing AZT through PLA‐PEG microparticles. Cumulative release data were fitted to an empirical equation to understand the nature of release characteristics. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 000: 000–000, 2011  相似文献   

18.
PELA-OmpK微球疫苗的部分特征及其对鲫鱼的口服免疫效果   总被引:2,自引:0,他引:2  
目的研究聚-DL-乳酸-聚乙二醇共聚物(DL-polylactide-co-polyethylene glycol,PELA)包裹哈维弧菌(Vibrio har-veyi,Vh)重组外膜蛋白OmpK制备的微球疫苗的部分特性及其对鲫鱼(Carassius auratus gibelio)的口服免疫效果。方法用可生物降解的合成高分子材料PELA,通过乳化溶剂挥发法包裹OmpK,制备微球疫苗,Bradford法测定蛋白浓度,计算蛋白包裹率;通过扫描电镜观察微球粒径大小及其在4℃保存不同时间的形貌。取鲫鱼随机分为3组:微球疫苗组、OmpK蛋白组和空白对照组,前两组采用疫苗或蛋白拌饲投喂方式口服免疫,投喂3 d,间隔7 d,再投喂3 d加强免疫;对照组投喂不含疫苗的饲料。加强免疫4周和8周后,经腹腔注射20 LD50的Vh EcGS020802株攻击,记录各组鱼死亡数,计算相对免疫保护率。结果制备的PELA-OmpK微球疫苗中OmpK蛋白的包裹率达78%。微球粒径小于12μm,且90%微球的粒径小于5μm。4℃保存10 d微球表面光滑、圆整;保存30 d PELA微球降解,粒径较大的微球表面出现空洞;保存60 d可见大量碎片,微球表面毛糙松散,出现多个空洞。微球疫苗加强免疫鲫鱼4周和8周后,对活菌攻击的相对免疫保护率分别为70%和48%,而口服OmpK蛋白组和空白对照组鱼全部死亡。结论用PELA包裹裸疫苗制备成微球疫苗,对抗原具有一定的保护作用,PELA用作鱼类口服疫苗的投递载体是可行的。  相似文献   

19.
Poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were melt-blended and extruded into films in the PLA/PEG ratios of 100/0, 90/10, 70/30, 50/50, and 30/70. It was concluded from the differential scanning calorimetry and dynamic mechanical analysis results that PLA/PEG blends range from miscible to partially miscible, depending on the concentration. Below 50% PEG content the PEG plasticized the PLA, yielding higher elongations and lower modulus values. Above 50% PEG content the blend morphology was driven by the increasing crystallinity of PEG, resulting in an increase in modulus and a corresponding decrease in elongation at break. The tensile strength was found to decrease in a linear fashion with increasing PEG content. Results obtained from enzymatic degradation show that the weight loss for all of the blends was significantly greater than that for the pure PLA. When the PEG content was 30% or lower, weight loss was found to be primarily due to enzymatic degradation of the PLA. Above 30% PEG content, the weight loss was found to be mainly due to the dissolution of PEG. During hydrolytic degradation, for PLA/PEG blends up to 30% PEG, weight loss occurs as a combination of degradation of PLA and dissolution of PEG. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1495–1505, 1997  相似文献   

20.
白静  崔晶  顾玉蓉  刘红波 《塑料》2020,49(2):64-68
采用溶液共混法制备了一系列不同配比的聚乳酸(PLA)/聚乙二醇(PEG)共混物。通过偏光显微镜(POM)、扫描电镜(SEM)和差式扫描量热仪(DSC)研究了不同PEG含量的PLA/PEG共混物在不同结晶温度下,聚乳酸的晶体形貌、球晶生长速率及热力学性能。研究发现,PEG能够显著提高聚乳酸球晶的生长速率。当PEG含量为60%时,PLA/PEG共混物中聚乳酸球晶的生长速率最快,达到23.6μm/min,比纯聚乳酸的最快球晶生长速率(0.5μm/min)高47倍。但是,当PEG含量高于60%时,聚乳酸球晶的生长速率有所降低。同时,PLA/PEG共混物中聚乳酸球晶速率随结晶温度变化的取向,均向低温移动。另外,PLA/PEG共混物中聚乳酸球晶呈现环状花纹。DSC测试结果表明,随着PEG含量的增加,PLA/PEG共混物的玻璃化转变温度明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号