首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
表面活性剂对复合镀(Ni-P)-MoS_2中MoS_2颗粒分散性的影响   总被引:1,自引:0,他引:1  
赵杰 《电镀与精饰》2013,(4):1-3,18
选取阳离子表面活性剂十六烷基三甲基溴化铵、全氟辛基季铵碘化物、非离子表面活性剂聚乙二醇以及阴离子表面活性剂全氟辛酸磺酸钾。研究了不同类型的表面活性剂的复配对化学复合镀(Ni-P)-MoS2中MoS2分散性的影响。结果表明,阳离子与非离子表面活性剂之间的协同作用,有利于MoS2纳米颗粒的分散,可以提高(Ni-P)-MoS2复合镀层的质量。  相似文献   

2.
采用化学镀方法制备(Ni-P)-Si_3N_4纳米微粒复合镀层,研究了不同类型表面活性剂及分散方式对镀液中纳米粉体分散稳定性的影响。结果表明:采用超声波加阴离子表面活性剂分散纳米粉体,可提高镀液中纳米颗粒的分散和稳定性;提高了镀层的硬度,使复合镀层的耐蚀性比Ni-P合金镀层提高20%~50%,耐磨性提高将近4倍。  相似文献   

3.
研究了镁合金(Ni-P)-SiC纳米颗粒化学复合镀层的制备,并对复合镀层的性能进行测试,揭示出SiC纳米颗粒和表面活性剂对镀层硬度及耐磨性的影响规律。  相似文献   

4.
利用化学镀方法获得了(Ni-P)-Si C纳米微粒复合镀层,并研究了Si C颗粒含量、p H及热处理等条件对镀层硬度及耐磨性的影响。扫描电镜测试表明,镀层表面平整,Si C纳米颗粒均匀复合于镀层中。镀层的硬度与耐磨性能测试表明,随着镀液中Si C含量的增加,复合镀层的硬度与耐磨性先升高后降低。当镀液中Si C质量浓度为10 g/L时,镀层硬度及耐磨性最好,热处理后的镀层硬度高达1069 HV。  相似文献   

5.
锦纶织物复合化学镀(Ni-P)-Si3N4纳米微粒复合镀层   总被引:1,自引:0,他引:1  
采用纳米复合化学镀技术,分别于酸性和碱性镀液中在锦纶织物表面沉积了(Ni-P)-Si3N4复合镀层,对镀层表面形貌、结构和织物热性能进行了表征,并测试了化学镀织物的电磁波屏蔽和耐磨性能.研究结果表明,Si3N4纳米微粒的引入使酸性复合化学镀(Ni-P)-Si3N4镀层无定形态有所增强,碱性复合化学镀(Ni-P)-Si3...  相似文献   

6.
将纳米Al2O3应用于化学复合镀中,研究了表面活性剂对纳米Al2O3粉的分散状态和(Ni-P)-Al2O3纳米微粒复合镀层组织形貌的影响。结果表明,通过选择合适的表面活性剂对纳米Al2O3分散后再加入到镀液中进行施镀,方可得到分散均匀的复合镀层。  相似文献   

7.
(Ni-P)-纳米Si3N4微粒复合刷镀工艺研究   总被引:11,自引:1,他引:10  
论述了(Ni-P)-纳米Si3N4微粒复合刷镀工艺,设备及(Ni-P)-纳米Si3N4微粒复合刷镀液的组成和配制方法;研究了纳米Si3N4微粒在刷镀液中的含量,刷镀工作电压和刷镀温度对(Ni-P)-纳米Si3N4微粒复合刷镀层的影响;研究了在不同的热处理温度下复合刷镀层的硬度和耐磨性。  相似文献   

8.
(Ni-P)-纳米TiO2微粒化学复合镀层的摩擦特性   总被引:19,自引:1,他引:18  
通过对化学镀Ni-P合金,化学复合镀(Ni-P)-微米SiC微粒复合镀层和化学复合镀(Ni-P)-纳米TiO2微粒复合镀层研究与比较,探讨了化学复合镀(Ni-P)-纳米TiO2微粒复合镀层的摩擦学特性;研究发现化学复合镀(Ni-P)-纳米TiO2微粒复合镀层由于其良好的组织与性能,滑动磨损过程中具有低的摩擦系数和高的耐磨性。这种良好的摩擦学特性在高载荷下更为突出。  相似文献   

9.
为了改进钢材表面性能,采用复合化学镀技术制备( Ni-P) -Al2O3纳米微粒复合镀层,由于纳米微粒独特的物理化学特性致使使得到的复合镀层具有多种优良性能.通过Ni-P合金镀层、(Ni-P) -Al2O3纳米微粒复合镀层和热处理后的(Ni-P) -Al2O3纳米微粒复合镀层硬度和耐磨性能测试,得出(Ni-P)-Al2...  相似文献   

10.
采用复合化学镀技术,实现了锦纶织物纤维表面复合化学镀(Ni-P)-Fe3O4纳米微粒复合镀层.结果表明:与化学镀镍-磷合金相比,不同分散剂分散Fe3O4纳米颗粒镀层表面粗糙度有所不同,但晶体结构没有改变.当质量增加率相同时,酸性化学镀镍-磷合金织物的电磁波屏蔽性能优于碱性化学镀镍-磷合金织物.烘燥温度和时间、Fe3O4...  相似文献   

11.
12.
Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.  相似文献   

13.
Some biological aspects of the new complex imidazolium bisimidazole tetrachloro iridate(III)-IRIM- the iridium(III) analogue of ICR, were considered. More in detail the conformational effects produced by IRIM on DNA and the cytotoxic properties of IRIM on some selected human cell lines were measured. Dialysis experiments and DNA thermal denaturation studies are suggestive of poor binding of IRIM to DNA; formation of interstrand crosslinks is not observed. In any case CD measurements suggest that addition of increasing amounts of IRIM to calf thymus DNA results into significant spectral changes, that are diagnostic of a direct interaction with DNA. A number of experiments carried out on the A2780 human ovarian carcinoma, B16 murine melanoma, MCF7 and TS mammary adenocarcinoma tumor cell lines strongly point out that IRIM does not exhibit significant growth inhibition effects within the concentration range 10(-4)-10(-6) M. It is suggested that the lower biological effects of IRIM compared to ICR are a consequence of the larger kinetic inertness of the iridium(III) center with respect to ruthenium(III).  相似文献   

14.
The miscibilities of poly(phenylene) sulfide/poly(phenylene sulfide sulfone) (PPS/PPSS) and poly(phenylene) sulfide/poly(phenylene sulfide ether) (PPS/PPSE) blends were invesigated in terms of shifts of glass transition temperatures Tg of pure PPS, PPSS, a dn PPSE. The crystallization kinetics of PPS/PPSS blends was also studied as a function of molar composition. The PPS/PPSS and PPS/PPSE blends are respectively partially and fully miscible. PPSE shows a plasticizing effect on PPS as does PPS on PPSS, which necessarily improves te processibility in the respective systems. We can control Tg and melting temperature Tm of PPS by varying amounts of PPSE in blends. The melt crystallization temperature Tmc of PPS/PPSE blends was higher than that of the PPSE homopolymer. Therefore, these blends require shorter cycle times in processing than pure PPSE. The overall rate of crystallization for PPS/PPSS blends follows the Avrami equation with an exponent ?2. The maximal rate of crystallization for PPS/PPSS blends occurs at a temperatre higher by 10°C than that for PPS, while the crystallization half time t1/2 is 4 times shorter. In the cold crystallization range, crystal growth rates increase and Avrami exponents decrease significantly as the temperature increases.  相似文献   

15.
The rheological behavior of blends of poly(methyl methacrylate) (PMMA) and poly(acrylonitrile-stat-styrene)-graft-polybutadiene (ABS) was investigated using a cone-and-plate rheometer. The rheological properties measured were shear stress (σ12), viscosity (η), and first normal stress difference (N1) as functions of shear rate (\documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma$ \end{document}) in steady shearing flow, and storage modulus (G′) and loss modulus (G″) as functions of frequency (ω) in oscillatory shearing flow. It has been found that the rheological behavior of blends of ABS and PMMA was very similar to that of blends of poly(styrene-stat-acrylonitrile) (SAN) and PMMA, in that N1 in logarithmic plots of N1 versus σ12, and G′ in logarithmic plots of G′ versus G″, vary regularly with blend composition. This has led us to conclude that the rubber particles that are grafted on an SAN resinous matrix in ABS resin plays only a minor role in influencing the compatibility of ABS/PMMA blends, and that the SAN chains attached to the surface of rubber particles, and the SAN matrix phase, play a major role in compatibilizing ABS resin with PMMA.  相似文献   

16.
周志  林中祥  蔡凌云 《精细化工》2015,32(3):353-356
报道了以(+)-脱氢枞胺为起始原料,通过两条路线合成生物活性的二萜化合物(+)-弥罗松酚。路线(1):(+)-脱氢枞胺在羟氨-O-磺酸和氢氧化钠作用下还原脱氨生成脱氢松香烷,再经Friedele-Crafts乙酰化、BaeyerVilliger氧化、水解生成(+)-弥罗松酚,总产率29.5%。路线(2):(+)-脱氢枞胺还原脱氨,然后与过氧化邻苯二甲酰反应得到(+)-弥罗松酚,总产率31.9%。  相似文献   

17.
The addition of side groups to improve the photooxidative stability of polymers used in polymer-based light-emitting diodes (LEDs) is explored. Infrared spectroscopy and computational chemistry techniques are used to study the effects of chemical substitution of the reactive vinylene moiety in poly(phenylene vinylene) (PPV). The bond order of the vinylene group in small oligomers is calculated using semiempirical techniques to assess the improvement in stability toward oxidants such as singlet oxygen. We find that PPV dimers allow relative comparisons across a range of possible substitutions. Experimental results correlate well with these calculations. The addition of electron-withdrawing substituents, such as nitrile groups, to the vinylene moiety is found to be particularly effective in reducing the reactivity of alkoxy-substituted PPV toward singlet oxygen. The photooxidative stability of a poly(phenylene acetylene) (PPA) derivative is also studied. It appears that this family of polymers is more stable toward photooxidation than are its PPV analogs. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2451–2458, 1998  相似文献   

18.
Properties of two high performance engineering thermoplastics, amorphous polyethersulfone (PES) and semicrystalline polyetheretherketone (PEEK), are discussed. Both resins can be processed by conventional techniques, compounded with high performance fibers, and have high service temperature (up to 300°C). Due to the amorphous character PES can be dissolved and spray coated into metals.  相似文献   

19.
Uniaxial and plane strain compression experiments are conducted on amorphous poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG) over a wide range of temperatures (25-110 °C) and strain rates (.005-1.0 s−1). The stress-strain behavior of each material is presented and the results for the two materials are found to be remarkably similar over the investigated range of rates, temperatures, and strain levels. Below the glass transition temperature (θg=80 °C), the materials exhibit a distinct yield stress, followed by strain softening then moderate strain hardening at moderate strain levels and dramatic strain hardening at large strains. Above the glass transition temperature, the stress-strain curves exhibit the classic trends of a rubbery material during loading, albeit with a strong temperature and time dependence. Instead of a distinct yield stress, the curve transitions gradually, or rolls over, to flow. As in the sub-θg range, this is followed by moderate strain hardening and stiffening, and subsequent dramatic hardening. The exhibition of dramatic hardening in PETG, a copolymer of PET which does not undergo strain-induced crystallization, indicates that crystallization may not be the source of the dramatic hardening and stiffening in PET and, instead molecular orientation is the primary hardening and stiffening mechanism in both PET and PETG. Indeed, it is only in cases of deformation which result in highly uniaxial network orientation that the stress-strain behavior of PET differs significantly from that of PETG, suggesting the influence of a meso-ordered structure or crystallization in these instances. During unloading, PETG exhibits extensive elastic recovery, whereas PET exhibits relatively little recovery, suggesting that crystallization occurs (or continues to develop) after active loading ceases and unloading has commenced, locking in much of the deformation in PET.  相似文献   

20.
Hybrid films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) were prepared with different molecular weights of poly(ethylene oxide) (PEO). The cross-linking reaction between PEO and PEDOT:PSS was performed at high temperature and confirmed by using differential scanning calorimeter (DSC), contact angle measurement, and solid-state 1H NMR. The effect of chemical reaction on the conductivity and morphology of these hybrid films was studied by using 4-point probe and atomic force microscope (AFM), respectively. As-spun PEO/PEDOT:PSS films have lower electric conductivity due to the addition of nonconductive PEO, and exhibits no molecular weight dependence on conductivity. After chemical cross-linking reaction at high temperature, only PEDOT:PSS films with lowest molecular weight PEO additives show enhanced conductivity with increasing reaction time. AFM result indicates that the heat-treated PEO/PEDOT:PSS hybrid films show grain-like morphology compared to ethylene glycol treated PEDOT:PSS films which shows continuous PEDOT domain. In the present work we demonstrate that the cross-linking reaction can be used to improve the wet stability of PEDOT:PSS nanofiber, showing good water resistance and excellent dimensional stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号